Ley de los Signos

Al efectuar el producto entre números reales, debemos ser estar muy atentos al signo de los factores involucrados para llegar a la conclusión correcta. Es por esto que enunciaremos los cuatro casos que se pueden presentar al efectuar el producto de de dos factores.

También pudiera interesarte

Anuncios

Consideremos dos números reales a y b; y para ser enfáticos, los denotaremos con +a y +b. En contraparte, consideremos sus opuestos aditivos denotados con -a y -b, entonces tenemos que:

(+a) \cdot (+b) = +(a \cdot b)

(-a) \cdot (+b) = -(a \cdot b)

(+a) \cdot (-b) = -(a \cdot b)

(-a) \cdot (-b) = +(a \cdot b)

De esta forma, podemos establecer una regla informal conocida como la Ley de Los Signos sobre el producto de números enteros de la siguiente forma:

Más por más, más.
Más por menos, menos.
Menos por más, menos.
Menos por menos, más.

Anuncios
Anuncios
Anuncios

Ejemplo

Ejemplo 1

Para efectuar el producto 3 \cdot 3, el signo de ambos factores es positivo, así que los multiplicamos y el resultado tendrá signo positivo.

3 \cdot 3 = 9

Ejemplo 2

Para efectuar el producto 2 \cdot \sqrt(5), el signo de ambos factores es positivo, así que los multiplicamos y el resultado tendrá signo positivo.

2 \cdot \sqrt{5} = 2 \sqrt{5}

Ejemplo 3

Para efectuar el producto (-2) \cdot 5, el signo de ambos factores distinto, así que los multiplicamos y el resultado tendrá signo negativo.

(-2) \cdot 5 = - ( 2 \cdot 5 ) = -10

Anuncios
Anuncios
Anuncios

Ejemplo 4

Para efectuar el producto (-3) \cdot \frac{1}{3}, el signo de ambos factores distinto, así que los multiplicamos y el resultado tendrá signo negativo.

(-3) \cdot  \frac{1}{3}  = - ( 3 \cdot  \frac{1}{3} ) = -1

Ejemplo 5

Para efectuar el producto 6 \cdot (-3), el signo de ambos factores distinto, así que los multiplicamos y el resultado tendrá signo negativo.

6 \cdot (-3) = - (6 \cdot 3) = -18

Ejemplo 6

Para efectuar el producto 10 \cdot (-\sqrt{7}), el signo de ambos factores distinto, así que los multiplicamos y el resultado tendrá signo negativo.

10 \cdot (- \sqrt{7}) = - (10 \cdot  \sqrt{7}) = -10 \sqrt{7}

Ejemplo 7

Para efectuar el producto (-4) \cdot (-8), el signo de ambos factores es negativo, así que los multiplicamos y el resultado tendrá signo positivo.

(-4) \cdot (-8) = (4 \cdot 8) = 32

Ejemplo 8

Para efectuar el producto (-x) \cdot (-x), donde x es una variable real. Notemos que si bien no sabemos si la variable es positiva o negativa, el signo de ambos factores es negativo, así que los multiplicamos y el resultado tendrá signo positivo.

(-x) \cdot (-x) = (x \cdot x) = x^2


Anuncio publicitario

3 comentarios en “Ley de los Signos

¿Tienes alguna duda? Compártela en los comentarios.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.