División de Fracciones

Al dividir fracciones, debemos tomar en cuenta que si p y q son números enteros, con q distinto de cero, entonces, la división p \div q es en realidad la multiplicación de p por el inverso multiplicativo de q, es decir, \frac{1}{q}. Tomando esto en cuenta, consideremos lo siguiente:

Sean a, b, c y d números enteros tales que b y d son distintos de cero. Definimos la división de las fracciones \frac{a}{b} entre \frac{c}{d}, multiplicando \frac{a}{b} por el inverso multiplicativo de \frac{c}{d}, es decir, \frac{d}{c}. Por lo tanto, multiplicamos a por d y dividimos esto entre el producto de b por c, de la siguiente forma:

Una forma fácil de recordar esta suma para aquellos a los que se les presenta dificultad, es notar que al efectuar las operaciones se hace la forma de una cruz al multiplicar numerador por denominador y denominador por numerador tal como veremos a continuación

Otra forma de recordar la división de fracciones consiste en reescribir la división entre fracciones como una fracción de fracciones y aplicar lo que en algunos países se conoce como la Doble C y en otros como la Ley del Sandwich (¿cómo le llaman en tu país?) de la siguiente forma

Veamos con algunos ejemplos como efectuar la división entre fracciones.

Ejemplos

Ejemplo 1

Efectúe la división de \frac{1}{2} entre \frac{3}{4}.

\frac{1}{2} \div \frac{3}{4} = \frac{1 \cdot 4}{2 \cdot 3} = \frac{4}{6} = \frac{2}{3}

Ejemplo 2

Efectúe la división de \frac{7}{3} entre \frac{2}{5}.

\frac{7}{3} \div \frac{2}{5} = \frac{7 \cdot 5}{3 \cdot 2} = \frac{35}{6}

Ejemplo 3

Efectúe la división de 1 entre \frac{4}{9}. Para efectuar esta división debemos notar primero que el número 1 se puede escribir como la fracción \frac{1}{1}, entonces tenemos que

\frac{1}{1} \div \frac{4}{9} = \frac{1 \cdot 9}{1 \cdot 4} = \frac{9}{4}

Ejemplo 4

Efectúe la división de \frac{3}{11} entre 6. Para efectuar esta división debemos notar primero que el número 6 se puede escribir como la fracción \frac{6}{1}, entonces tenemos que

\frac{3}{11} \div \frac{6}{1} = \frac{3 \cdot 1}{11 \cdot 6} = \frac{3}{66} = \frac{1}{22}

Ejemplo 5

Efectúe la división de \frac{5}{2} entre \frac{3}{7} y a su vez, todo esto, dividido entre \frac{11}{8}. Para efectuar esta división debemos proceder de la misma forma en que este problema ha sido enunciado, y para esto, usamos la propiedad asociativa.

\left( \frac{5}{2} \div \frac{3}{7} \right) \div  \frac{11}{6} = \left( \frac{35}{6} \right) \div  \frac{11}{8}

Una vez que hemos calculado la división que está entre los paréntesis, procedemos a hacer la segunda división.

\frac{35}{6} \div  \frac{11}{8} = \frac{280}{66} = \frac{140}{33}

Ejemplo 5 (Otro enfoque)

Otra forma de efectuar la división \frac{5}{2} \div \frac{3}{7} \div \frac{11}{8} es recordando que si la división es multiplicar por el inverso multiplicativo, entonces, consideramos los inversos multiplicativos de \frac{7}{3} y \frac{8}{11}. Posteriormente, efectuamos el producto de las siguientes tres fracciones:

\frac{5}{2} \div \frac{7}{3} \div \frac{8}{11} = \frac{280}{66} = \frac{140}{33}


5 comentarios en “División de Fracciones

¿Tienes dudas? ¿Necesitas más ejemplos? No dudes en escribir.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Salir /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios .