Protegido: Matemáticas 41 – Sección 01 – E2021 – Evaluación 7

Este contenido está protegido por contraseña. Para verlo introduce tu contraseña a continuación:

R para introducir a la Econometría: El coeficiente de determinación r².

Una vez que hemos calculado la función de regresión muestral como un modelo lineal a partir de un conjunto de datos, podemos notar en su gráfica que las observaciones no necesariamente caen sobre la línea que describe dicha función y aunque esta sería situación ideal (pues así podemos describir con precisión todo el conjunto de datos usando una función), esto no ocurre en la realidad.

También pudiera interesarte

Anuncios

La bondad de ajuste

Considerando el siguiente gráfico, si todas las observaciones cayeran en la línea de regresión, obtendríamos lo que se conoce como un ajuste perfecto, pero rara vez se presenta este caso. Por lo general los valores de $\hat{u}_i$ pueden ser positivos o negativos, gráficamente, podemos decir que algunas observaciones estarán por encima de la línea de regresión y otras por debajo.

Diagrama de Dispersión y Línea de Regresión | totumat.com

Aunque se tiene la esperanza de que los residuos alrededor de la línea de regresión sean lo más pequeños posibles, el coeficiente de determinación r^2 (caso de dos variables) o R^2 (regresión múltiple) es una medida comprendida que dice que tan bien se ajusta la línea de regresión muestral a los datos.

Antes de mostrar cómo calcular r^2, consideremos Diagramas de Venn para entender qué representa el valor de r^2, de forma que: el círculo Y, representa la variación en la variable dependiente Y; el círculo X, la variación en la variable explicativa X.

Si estos dos círculos no se intersectan, entonces la variación en Y no es explicada por la variación en X. El valor de r^2 que representa esta situación, es r^2=0

El coeficiente de determinación r² | totumat.com

La intersección de los dos círculos (el área sombreada) indica la medida en la cual la variación en Y se explica por la variación en X.

Entre mayor sea el área de la intersección, mayor será la variación en Y que se explica por la variación de X. r^2 es tan sólo una medida numérica de esta intersección y generalmente es un valor entre 0 y 1.

El coeficiente de determinación r² | totumat.com

Si estos dos círculos se intersectan en su totalidad, es decir, son iguales, entonces la variación en Y está explicada en su totalidad por la variación de la variable X. El valor de r^2 que representa esta situación, es r^2=1

El coeficiente de determinación r² | totumat.com

Para calcular r^2, partimos del hecho que Y_i = \hat{Y}_i + \hat{u}_i, que expresado en forma de desviación, es decir, como la diferencia de cada observación con la media,

y_i = \hat{y}_i + \hat{u}_i

Al elevar al cuadrado esta última ecuación en ambos lados y sumar sobre la muestra, obtenemos

\sum y_i^2

= \sum \hat{y}_i^2 + \sum \hat{u}_i^2 + 2\sum \hat{y}_i \hat{u}_i

= \sum \hat{y}_i^2 + \sum \hat{u}_i^2

= \hat{\beta}_2^2 \sum \hat{x}_i^2 + \sum \hat{u}_i^2

Esa última igualdad se debe a que \sum \hat{y}_i \hat{u}_i = 0 y \hat{y}_i = \hat{\beta}_2 \hat{x}_i.

Las diversas sumas de cuadrados en esta ecuación se describen de la siguiente manera:

  • \sum y_i = \sum (Y_i - \overline{Y})^2 es la variación total de los valores reales de Y respecto de su media muestral, que puede denominarse la suma de cuadrados total (SCT).
  • \sum \hat{y}_i = \sum (\hat{y}_i - \overline{Y})^2 = \hat{\beta}_2^2 \sum \hat{x}_i^2 es la variación de los valores de Y estimados alrededor de su media, que apropiadamente puede llamarse la suma de cuadrados debida a la regresión (es decir, debida a la variable explicativa), o explicada por ésta, o simplemente la suma de cuadrados explicada (SCE).
  • \sum \hat{u}_i es la la variación residual o no explicada de los valores de Y alrededor de la línea de regresión, o sólo la suma de cuadrados de los residuos (SCR).

Por lo tanto, podemos reescribir la última ecuación de la siguiente manera:

SCT = SCE + SCR

Demostrando así, que la variación total en los valores Y observados alrededor del valor de su media puede dividirse en dos partes, una atribuible a la línea de regresión y la otra a fuerzas aleatorias, pues no todas las observaciones Y caen sobre la línea ajustada.

Dividiendo esta ecuación, entre la SCT a ambos lados tenemos que

1 = \dfrac{SCE}{SCT} + \dfrac{SCR}{SCT}

= \dfrac{\sum (\hat{y}_i - \overline{Y})^2}{\sum (Y_i - \overline{Y})^2} + \dfrac{ \sum \hat{u}_i^2}{\sum (Y_i - \overline{Y})^2}

Finalmente, definimos el coeficiente de determinación r^2 como

r^2 = \dfrac{SCE}{SCT} = \dfrac{\sum (\hat{y}_i - \overline{Y})^2}{\sum (Y_i - \overline{Y})^2}

Podemos calcularlo en R usando la siguiente sintaxis:

r2 <- sum((Y.e - m.Y)^2)/sum((Y - m.Y)^2)

También podemos definir el coeficiente de determinación r^2 como

r^2 = 1 - \dfrac{SCR}{SCT} = 1 - \dfrac{ \sum \hat{u}_i^2}{\sum (Y_i - \overline{Y})^2}

Podemos calcularlo en R usando la siguiente sintaxis:

r2 <- 1 - sum((Y - Y.e)^2)/sum((Y - m.Y)^2)

Ejemplo

Consideremos un pequeño conjunto de datos, particularmente, los datos que se encuentran en la Tabla 3.2 del libro de Econometría de Damodar N. Gujarati and Dawn Porter en su quinta edición. Este conjunto de datos proporciona los datos primarios que se necesitan para estimar el efecto cuantitativo de la escolaridad en los salarios:

ObservaciónSalarioEscolaridad
14.45676
25.777
35.97878
47.33179
57.318210
66.584411
77.818212
87.835113
911.022314
1010.673815
1110.836116
1213.61517
1313.53118
Tabla 3.2

Una vez que hemos calculado el modelo lineal que define este conjunto de datos, podemos calcular el coeficiente de determinación para ver qué tan relacionadas están las variables Salario y Escolaridad, para esto, usamos la siguiente sintaxis:

r2 <- sum((salario.e - m.salario)^2)/sum((salario - m.salario)^2)

Al ejecutar estas instrucciones obtenemos coeficiente de determinación r^2, que en este caso es igual a 0.9077914.

En su pantalla debería aparecer:

Resultados de R, Coeficiente de Determinación r cuadrado. | totumat.com

En este caso, el valor del coeficiente de determinación sugiere que la variación en Y está explicada casi en su totalidad por la variación de la variable X.


Varianza y Error estándar

R para introducir a la Econometría: El error estándar.

El Método de los Mínimos Cuadrados Ordinarios (MCO) nos provee una forma estimar los parámetros \hat{\beta}_2 y \hat{\beta}_1, sin embargo, al estar estos valores condicionados a la muestra que se tome, es probable que entre una muestra y otra, estos valores presenten variaciones. Entonces, surge la pregunta: ¿de qué forma podemos garantizar precisión en las estimaciones? O al menos, ¿podemos medir la imprecisión de estas?

También pudiera interesarte

Anuncios


La varianza muestral y el error estándar

La teoría estadística provee una forma de medir la precisión de un valor estimado, esto es, el error estándar (ee) que está definido como la desviación estándar de la distribución muestral del estimador. Es importante recalcar que al hablar sólo de desviación estándar, hacemos referencia a la población, en cambio, al hablar del error estándar, hacemos referencia a la muestra de dicha población.

Considerando la varianza muestral, que mide la variabilidad de los datos respecto a su media; podemos calcular el error estándar al tomar la raíz cuadrada de esta. Entonces, si \sigma es la desviación estándar:

Calculamos la varianza y el error estándar del parámetro \hat{\beta}_2 usando las siguientes fórmulas respectivamente,

var(\hat{\beta}_2) = \dfrac{\sigma^2}{\sum x_i^2}

ee(\hat{\beta}_2) = \dfrac{\sigma}{ \sqrt{\sum x_i^2} }

Podemos calcular la varianza y el error estándar del parámetro \hat{\beta}_2 en R usando la siguiente sintaxis:

var.beta2 <- sigma2.e/sum( (Yd-m.Yd)^2 )
ee.beta2 <- sqrt(v.beta2)

Por otra parte calculamos la varianza y el error estándar del parámetro \hat{\beta}_1 usando las siguientes fórmulas respectivamente,

var(\hat{\beta}_1) = \dfrac{ \sum X_i^2 }{n \sum x_i^2} \cdot \sigma^2

ee(\hat{\beta}_1) = \sqrt{ \dfrac{ \sum X_i^2 }{n \sum x_i^2} } \cdot \sigma

Podemos calcular la varianza y el error estándar del parámetro \hat{\beta}_1 en R usando la siguiente sintaxis:

var.beta1 <- sigma2.e*sum( Yd^2 )/(length(Yd)*sum( (Yd-m.Yd)^2 ))
ee.beta1 <- sqrt(v.beta1)

La desviación estándar estimada y el error estándar de estimación

Si bien contamos con los datos para calcular parte de estas expresiones, aún desconocemos el valor de \sigma^2, pues este valor se obtiene a partir de la población pero sólo contamos con una muestra, afortunadamente, podemos definir una fórmula que nos estima a través de del Método de Mínimos Cuadrados Ordinarios a la verdadera pero desconocida \sigma^2, esta fórmula es

\hat{\sigma}^2 = \dfrac{\sum \hat{u}_i^2}{n-2}

Podemos calcular la desviación estándar estimada en R usando la siguiente sintaxis:

sigma2.e <- sum(res^2)/(lenght(X)-2)

Vale la pena destacar que la raíz cuadrada de \hat{\sigma}^2 se conoce como el error estándar de estimación o el error estándar de la regresión (eee). No es más que la desviación estándar de los valores Y alrededor de la línea de regresión estimada, la cual suele servir como medida para resumir la “bondad del ajuste” de dicha línea. Se calcula de la siguiente manera

\hat{\sigma} = \sqrt{\dfrac{\sum \hat{u}_i^2}{n-2}}

Podemos calcular este valor en R usando la siguiente sintaxis:

ee.e <- sqrt(sigma2.e)

Ejemplo

Consideremos un pequeño conjunto de datos, particularmente, los datos que se encuentran en la Tabla 3.2 del libro de Econometría de Damodar N. Gujarati and Dawn Porter en su quinta edición. Este conjunto de datos proporciona los datos primarios que se necesitan para estimar el efecto cuantitativo de la escolaridad en los salarios:

ObservaciónSalarioEscolaridad
14.45676
25.777
35.97878
47.33179
57.318210
66.584411
77.818212
87.835113
911.022314
1010.673815
1110.836116
1213.61517
1313.53118
Tabla 3.2

Una vez que hemos calculado el modelo lineal que define este conjunto de datos, podemos determinar el error estándar de los parámetros estimados, pero primero debemos estimar la desviación estándar usando la siguiente sintaxis:

sigma2.e <- sum( (residuos)^2 )/(length(salario)-2)

Podemos calcular la varianza y el error estándar del parámetro \hat{\beta}_2 en R usando la siguiente sintaxis:

var.beta2 <- sigma2.e/sum( (escolaridad-m.escolaridad)^2 )
ee.beta2 <- sqrt(var.beta2)

Al ejecutar estas instrucciones obtenemos error estándar del parámetro \hat{\beta}_2, que en este caso es igual a 0.06958134.


Podemos calcular la varianza y el error estándar del parámetro \hat{\beta}_1 en R usando la siguiente sintaxis:

var.beta1 <- sigma2.e*sum( escolaridad^2 )/(length(escolaridad)*sum( (escolaridad-m.escolaridad)^2 ))
ee.beta1 <- sqrt(var.beta1)

Al ejecutar estas instrucciones obtenemos error estándar del parámetro \hat{\beta}_1, que en este caso es igual a 0.8746239.

En su pantalla debería aparecer:

Varianza y Error Estándar de los parámetros en R. | totumat.com

Diagrama de Dispersión

R para introducir a la Econometría: Diagrama de Dispersión

Antes de empezar a definir un modelo sobre un conjunto de datos, es importante conocer el comportamiento de una variable respecto a otra pues de esta forma, podemos hacernos una idea de cual es el modelo más adecuado para describirlo.

También pudiera interesarte

Anuncios


Diagrama de Dispersión

Una de las formas más directas y sencillas para estudiar la forma en que se relacionan dos variables es usando un diagrama de dispersión. Si consideramos dos variables de un conjunto de datos, digamos una variable exógena x y una variable endógena y, un Diagrama de Dispersión (o Gráfico de Dispersión) consiste en ubicar en el plano cartesiano cada par ordenado formado por los elementos de estas dos variables. Ubicando la variable exógena en el eje horizontal y la variable endógena en el eje vertical.

De esta forma, si nuestro objetivo es definir un Modelo de Regresión Lineal, ubicamos en el eje horizontal, los valores de la variable X y en el eje vertical, los valores de la variable Y. Podemos generar un diagrama de dispersión en R recurriendo a la instrucción plot y usamos la siguiente sintaxis:

plot(X,Y)

Consideremos un pequeño conjunto de datos, particularmente, los datos que se encuentran en la Tabla 3.2 del libro de Econometría de Damodar N. Gujarati and Dawn Porter en su quinta edición. Este conjunto de datos proporciona los datos primarios que se necesitan para estimar el efecto cuantitativo de la escolaridad en los salarios:

ObservaciónSalarioEscolaridad
14.45676
25.777
35.97878
47.33179
57.318210
66.584411
77.818212
87.835113
911.022314
1010.673815
1110.836116
1213.61517
1313.53118
Tabla 3.2

Para generar un diagrama de dispersión que nos ayude a estudiar como el nivel de estudios afecta el salario de una persona, entonces: la variable Escolaridad será nuestra variable exógena y será ubicada en el eje horizontal; la variable Salario será nuestra variable endógena y será ubicada en el eje vertical.

Recurriremos a la instrucción plot para generar un diagrama de dispersión y usamos la siguiente sintaxis:

plot(escolaridad,salario)

Al ejecutar esta instrucción, aparecerá de forma inmediata el siguiente gráfico:

Diagrama de Dispersión | totumat.com

En su pantalla debería aparecer lo siguiente:

Diagrama de Dispersión | totumat.com

Residuos

Si bien los diagramas de dispersión nos ayudan a estudiar el comportamiento de dos variables, también nos ayudan a estudiar el comportamiento de los residuos. Uno de los supuestos para del Modelo Clásico de Regresión Lineal, estipula que no debe haber autocorrelación, esto quiere decir que la correlación de los residuos debe ser nula.

A partir de la forma en que está definido el modelo lineal, podemos calcular los residuos usando la siguiente fórmula:

\hat{u}_i = Y_i - \hat{Y}_i

Entonces, si calculamos cada uno de los valores estimados \hat{Y}_i, podemos determinar los residuos usando la siguiente sintaxis:

Y.e <- beta1 + beta2*X
res <- Y - Y.e

Usamos la instrucción plot(res) para generar un gráfico de dispersión de los residuos tomando en cuenta que en el eje horizontal se ubica el número de observación y en el vertical el residuo correspondiente. Un indicador de no autocorrelación es que el gráfico de dispersión no presente ningún patrón de comportamiento, en términos coloquiales: que estén todos a lo loco.

Continuando con nuestro ejemplo, generamos un gráfico usando la siguiente sintaxis:

salario.e <- beta1 + beta2*escolaridad
residuos <- salario - salario.e
plot(residuos)

Al ejecutar estas instrucciones, aparecerá de forma inmediata el siguiente gráfico:

Diagrama de Dispersión de los Residuos | totumat.com

En su pantalla debería aparecer:

Diagrama de Dispersión de los Residuos | totumat.com

Aunque pareciera no haber ningún patrón, no podemos asegurar no hay autocorrelación, también hay que considerar que el tamaño de la muestra es pequeño así que las afirmaciones que se hagan sobre el comportamiento que describe el modelo lineal puede ser impreciso.


Verbos para redactar competencias

Información importante: Esta tabla de verbos es de uso personal, no constituye una guía profesional para la estructuración programas de competencias. Sin embargo, la comparto para el que necesite tener a la mano una lista de verbos cuando esté redactando. Dicho esto, es importante tener algunas consideraciones a la hora de redactar competencias:

  • La conjugación de estos verbos para redactar competencias debe hacerse en tiempo presente en tercera persona, por ejemplo: elige, resuelve, comparte.
  • El hecho de que los verbos deben conjugarse, contraindica la forma infinitiva de estos verbos, por ejemplo, no debe usar: elegir, resolver, compartir.
  • Las capacidades conceptuales son las relacionadas con el saber teórico, el conocimiento y el “saber profesional”.
  • Las capacidades procedimentales son las relacionadas con el saber práctico, metodológico y el “hacer profesional”.
  • Las capacidades actitudinales son las relacionadas con: saber social, actitud, valor y el “ser profesional”.

También pudiera interesarte

Anuncios

Contenidos Conceptuales

Analizar
Comprobar
Deducir
Definir
Demostrar
Describir
Diferenciar
Elegir
Enumerar
Evaluar
Explicar
Expresar
Identificar
Inducir
Interpretar
Localizar
Memorizar
Planear
Reconocer
Reconocer
Recordar
Relacionar
Sintetizar

Contenidos Procedimentales

Adaptar
Caracterizar
Clasificar
Construir
Controlar
Conversar
Crear
Desarrollar
Determinar
Diseñar
Efectuar
Expresar
Formar
Investigar
Manejar
Manipular
Observar
Operar
Organizar
Orientarse
Programar
Proyectar
Recoger
Representar
Resolver
Simular
Solucionar
Usar
Utilizar

Contenidos Actitudinales

Aceptar
Admirar
Apreciar
Asumir
Autoestimar
Colaborar
Compartir
Contemplar
Crear
Cuidar
Disfrutar
Integrar
Interesar
Interiorizar
Inventar
Mostrar
Participar
Preferir
Rechazar
Respetar
Tender a
Valorar

Esta lista está basada en el trabajo de la Catedrática Xiomara Ortega, pero pareciera que ha sido un trabajo descontinuado y aunque hay varias observaciones hechas sobre su trabajo, pocas han sido las correcciones, en consecuencia agradezco cualquier corrección u observación que pueda mejor o complementar el contenido de esta publicación.


Bibliografía Consultada: