Ejercicios Propuestos – Derivadas Parciales Implícitas

Anuncios

Dadas las siguientes funciones definidas en varias variables. Derivando implícitamente, calcule las siguientes derivadas parciales:

\dfrac{\partial x}{\partial z}, \dfrac{\partial x}{\partial y}, \dfrac{\partial y}{\partial x}, \dfrac{\partial y}{\partial z}, \dfrac{\partial z}{\partial x}, \dfrac{\partial z}{\partial y}

  1. x=0
  2. 2x=1
  3. -3z=2
  4. 2x-3y+4z=3

  1. x+y=4
  2. x+z=5
  3. xy+xz+3=6
  4. x^2+ y^2+z^2=49

  1. \frac{7}{x}=8
  2. -\frac{5}{y}=9
  3. \frac{3}{z}=10x
  4. \frac{11}{x+3y-2z}=y

  1. \frac{x}{y}+\frac{x}{z}=-1
  2. 5\frac{x}{y}-3\frac{y}{z}=-2
  3. 6\frac{x+y}{xy}+10\frac{x+z}{xy}=-3
  4. \frac{2x-y}{x+8y}+z=-4

  1. 2\frac{x}{\sqrt{yz}}=-5
  2. -3\frac{\sqrt{xz}}{y}=-6
  3. 10\frac{x+y+2z}{xyz}=-7
  4. \frac{x-y+z}{5x+y-z}=-8
  1. \sqrt{x}yz=-9
  2. 6x\sqrt{yz}=-10
  3. 8\sqrt{x}\sqrt{y}=-xz
  4. \frac{\sqrt{zx}}{\sqrt{y}} + zx^2y^2+20=x+y
  1. x^2+5x^4+y-2y^3+6z^7=2x+y+z
  2. x\sqrt{y}+x^3+y^2-z=3x
  3. \sqrt{z}\sqrt{x}\sqrt{y}=4y
  4. \frac{\sqrt{y}}{\sqrt{x}} + 10z^3 + 5x^2 -y^2-15=5y

  1. \ln(x)=-2x
  2. -3\ln(y)=-3x
  3. \ln(-z)=-4y
  4. \ln(3x-y+z)=-5y

  1. 2\ln(z)\ln(x)\ln(y)=x+y+z
  2. 3\ln(7y)+x^2-z^3=x-y+z
  3. -4\ln(xyz)-y^3=2x+2y
  4. 5\ln(x+y+z)+x^3+y^2+z=2x+3y+4z

  1. {\rm e}^{x}=yz
  2. 2{\rm e}^{y}=-2xz
  3. -6{\rm e}^{z}=3xy
  4. {\rm e}^{x+y+z}=-4xyz

  1. {\rm e}^{2^x2+5x^4+y-2y^3+6z^5}=x^2
  2. {\rm e}^{xz\sqrt{y}+x^3+y^2+z}=6y^3
  3. {\rm e}^{\frac{x-y+z}{x+y-z}}=-z^4
  4. {\rm e}^{\ln(x+y+z)+x^2+y^3+z^4}=4y^2


Ejercicios Propuestos – Derivadas Parciales

Anuncios

Dadas las siguientes funciones definidas en varias variables.

Calcule las siguientes derivadas parciales:

\dfrac{\partial f}{\partial x}, \dfrac{\partial f}{\partial y}

Posteriormente, calcule las siguientes derivadas parciales de orden superior:

\dfrac{\partial^2 f}{\partial x^2}, \dfrac{\partial^2 f}{\partial x \partial y}, \dfrac{\partial^2 f}{\partial y \partial x}, \dfrac{\partial^2 f}{\partial y^2}.

  1. f(x,y)=x
  2. f(x,y)=-2y
  3. f(x,y)=13xy
  4. f(x,y)=5 x^2 y^2

  1. f(x,y)=x+y
  2. f(x,y)=2y-x
  3. f(x,y)=3xy+8\frac{x}{y}+3
  4. f(x,y)=5x^2 - 2y^2+xy

  1. f(x,y)=\frac{1}{x}
  2. f(x,y)=-\frac{3}{y}
  3. f(x,y)=\frac{7}{xy}
  4. f(x,y)=\frac{15}{x+y}

  1. f(x,y)=\frac{2y}{x}
  2. f(x,y)=\frac{x}{5y}
  3. f(x,y)=\frac{7x+y}{2xy}
  4. f(x,y)=\frac{x-4y}{x+y}

  1. f(x,y)=\frac{2x}{\sqrt{y}}
  2. f(x,y)=\frac{7\sqrt{x}}{y}
  3. f(x,y)=-\frac{x+5y}{xy}
  4. f(x,y)=\frac{x-y}{9x+y}

  1. f(x,y)=\sqrt{x}y
  2. f(x,y)=-x\sqrt{y}
  3. f(x,y)=4\sqrt{x}\sqrt{y}
  4. f(x,y)=\frac{\sqrt{x}}{\sqrt{y}} + x^2y^2+20
  1. f(x,y)=x^2+5x^4+y-2y^3+6
  2. f(x,y)=5x\sqrt{y}+2x^3-y^2
  3. f(x,y)=10\sqrt{x}\sqrt{y}
  4. f(x,y)=\frac{\sqrt{y}}{\sqrt{x}} + x^2+y^2-15

  1. f(x,y)=\ln(x)
  2. f(x,y)=\ln(5y)
  3. f(x,y)=-\ln(3xy)
  4. f(x,y)=\ln(3x+10y)

  1. f(x,y)=2\ln(x) \ln(y)
  2. f(x,y)=3\ln(y)-x^2
  3. f(x,y)=4\ln(xy)-y^3
  4. f(x,y)=5\ln(x+y)+8x^3+y^2

  1. f(x,y)={\rm e}^{x}
  2. f(x,y)=-{\rm e}^{y}
  3. f(x,y)=19{\rm e}^{xy}
  4. f(x,y)=-12{\rm e}^{x+y}

  1. f(x,y)={\rm e}^{2^x2+5x^4+y-2y^3+6}
  2. f(x,y)={\rm e}^{x\sqrt{y}+x^3+y^2}
  3. f(x,y)={\rm e}^{\frac{x-y}{x+y}}
  4. f(x,y)={\rm e}^{\ln(x+y)+x^3+y^2}


Diferenciales

Las diferencias y las razones de cambio son elementos fundamentales para el estudio de funciones diferenciables pues, al sentar estos la base para calcular la derivada de una función, podemos establecer relaciones que permiten aproximar valores de la función a través de su derivada.

También pudiera interesarte

Anuncios

Diferencia de una función

Al estudiar el comportamiento de una función y=f(x) diferenciable en todo su dominio, si consideramos un valor x en el dominio de ella, y x+h un valor incrementado de x, definimos la diferencia entre estos dos valores (la diferencia en x) de la siguiente manera:

\Delta_x = (x+h) - h = h

De igual forma, al considerar las imágenes de estos dos valores a través de la función, es decir, de f(x) y f(x+h); definimos la diferencia entre estas dos imágenes (la diferencia en y) de la siguiente manera:

\Delta_y = f(x+h) - f(x)

Es decir, la diferencia en y mide cuanto varía la función cuando la variable x varía con medida igual a la diferencia en x.

Nota: hemos usado la letra griega delta mayúscula «\Delta» pues es la letra equivalente a la letra «d» en el español.

Estas diferencias se aprecian con mayor claridad al observar la gráfica de la función y=f(x):

Diferencias en una función. | totumat.com

El estudio de estas diferencias es de vital importancia para el cálculo de derivadas, pues al considerar valores muy pequeños de la diferencia \Delta_x, el siguiente cociente se aproximará a la derivada de la función f(x):

\frac{\Delta_y}{\Delta_x}

Debemos recordar que la derivada de la función f(x) está definida de la siguiente forma:

f'(x) = \lim_{\Delta_x \to 0} \frac{\Delta_y}{\Delta_x}

Anuncios

Diferencial de una función

Por otra parte, al estudiar el comportamiento de la recta tangente a la función y=f(x) en el punto \left( x, f(x) \right), llamémosla t(x). Si consideramos un valor x, y x+h un valor incrementado de x, definimos el diferencial entre estos dos valores (el diferencial de x) de la siguiente manera:

dx = (x+h) - h = h

De igual forma, al considerar las imágenes de estos dos valores a través de la recta tangente, es decir, de t(x) y t(x+h); definimos el diferencial entre estas dos imágenes (el diferencial de y) de la siguiente manera:

dy = t(x+h) - t(x)

Estos diferenciales se aprecian con mayor claridad al observar la gráfica de la función y=f(x):

Diferenciales de una función. | totumat.com

El estudio de estos diferenciales es de vital importancia para el cálculo de derivadas, el siguiente cociente, al ser exactamente la pendiente de la recta tangente a la curva en el punto x, es la derivada de la función f(x):

\frac{dy}{dx} = f'(x)

De esta igualdad, podemos despejar dy y así, podemos plantear la siguiente igualdad, que nos define la forma en que se calcula el diferencial de la función y=f(x):

dy = f'(x) \cdot dx

Es decir, el diferencial de y mide cuanto incrementa la pendiente recta tangente cuando la variable x presenta un incremento con medida igual al diferencial de x.

Anuncios

Relación entre diferenciales y diferencias

Hemos visto que las diferencias y los diferenciales están relacionados íntimamente con la derivada de una función, entonces, notando que la diferencia en x y el diferencial de x son exactamente el mismo elemento, es decir, \Delta_x = dx; debemos estudiar, con particular interés, la relación entre \Delta_y y dy.

Hemos dicho que el cociente \frac{\Delta_y}{\Delta_x} se aproxima a la derivada de la función, por lo tanto, podemos considerar un número real \alpha que depende de \Delta_x que nos permite establecer la siguiente relación:

\frac{\Delta_y}{\Delta_x} = f'(x) + \alpha

Entonces, al multiplicar en ambos lados de la ecuación por \Delta_x, despejamos \Delta_y obteniendo que

\Delta_y = f'(x) \cdot \Delta_x + \alpha \cdot \Delta_x \Longleftrightarrow \Delta_y = f'(x) \cdot dx + \alpha \cdot dx

De esta forma, si nos fijamos que el primer sumando es determinado por f'(x) \cdot dx, que es justamente dy, nos damos cuenta que \alpha \cdot dx que representa el excedente sobre dy. Estos dos sumandos se aprecian con mayor claridad al observar la gráfica de la función y=f(x).

Relación entre diferenciales y diferencias | totumat.com

Considerando entonces que \Delta_y = dy + \alpha \cdot dx, a medida que se hace pequeño el diferencial dx también lo hará \alpha, y en consecuencia, se hará aún más pequeño el producto \alpha \cdot dx. Por lo tanto,

Si dx \to 0, entonces \Delta_y \to dy

Concluimos entonces, que el diferencial de y es una aproximación lineal (a través de la recta tangente a la curva) de la diferencia de y, es decir,

\Delta_y \approx dy = f'(x) \cdot dx

Anuncios

Cálculo del diferencial de una función

Si consideramos una función y=f(x), el diferencial de esta puede expresarse de las siguientes formas:

dy ó df

En los siguientes ejemplos, veremos como calcular el diferencial de una función.

Ejemplos

Ejemplo 1

Considerando la función y = x^2, para calcular su diferencial, basta con calcular la derivada de la función y multiplicarla por el diferencial de x, de la siguiente forma:

dy = 2x \ dx

Ejemplo 2

Considerando la función y = 6x^{10} + 13x + 20, para calcular su diferencial, basta con calcular la derivada de la función y multiplicarla por el diferencial de x, de la siguiente forma:

dy = (60x^9 + 13) \ dx

Ejemplo 3

Considerando la función y = \textit{\Large e}^{3x^5}, para calcular su diferencial, basta con calcular la derivada de la función y multiplicarla por el diferencial de x, de la siguiente forma:

dy = 15x^4 \cdot \textit{\Large e}^{3x^5} \ dx

Ejemplo 4

Considerando la función y = \ln (9x^3 + 12x^2 + 7x + 10), para calcular su diferencial, basta con calcular la derivada de la función y multiplicarla por el diferencial de x, de la siguiente forma:

dy = \dfrac{27x^2 + 24x + 7}{9x^3 + 12x^2 + 7x + 10} \ dx


Pregunta de Reddit: ¿Cuál es la suma de los valores enteros que p puede tomar?

Mientras ojeaba reddit, me topé con este problema que comparte el usuario u/already_taken-chan, en el cual señala que «no encontró la respuesta». Una de las las respuestas con más puntaje me pareció extremadamente larga y la segunda con más puntaje, me pareció muy corta. Así que les comparto mi apreciación.

También pudiera interesarte

Anuncios

r/askmath - I couldn't find the answer to this question, asked my math teacher and he couldn't find it either, tried going into Δ > 0 but that gave me no answer, tried (-b +- sqrt(Δ))/2a but that just left me p being in a range that didn't give any of the answers, is the question wrong?

La pregunta está planteada en Turco, la traducción correcta al inglés sería: «If the equation has two different real roots, what is the sum of the integer values ​​p can take?», y al español, sería: «Si la ecuación tiene dos raíces reales diferentes, ¿cuál es la suma de los valores enteros que p puede tomar?«.

Primero debemos considerar la ecuación que se plantea y reescribirla como una ecuación cuadrática de la forma ax^2+bx+c=0 para que sea más fácil identificar los elementos involucrados en ella.

-x^2 + px + 3 = (x+2)^2

\Rightarrow -x^2 + px + 3 = x^2 - 4x + 4

\Rightarrow -x^2 + px + 3 - x^2 + 4x - 4 = 0

\Rightarrow -2x^2 + (p+4)x - 1 = 0

\Rightarrow 2x^2 - (p+4)x + 1 = 0

Ya que hemos reescrito esta ecuación, debemos tomar en cuenta que para que una ecuación de la forma ax^2+bx+c=0 tenga dos soluciones distintas, el discriminante de ella debe ser positivo, es decir,

b^2-4 \cdot a \cdot c > 0

Entonces, identificando a=2, b=-(p+4) y c=1, tenemos que

\left( -(p+4) \right)^2 - 4 \cdot (2) \cdot (1) > 0

\Rightarrow \left( p+4 \right)^2 - 8 > 0

\Rightarrow \left( p+4 \right)^2 > 8

Anuncios

En este punto pudiéramos plantear una Inecuación Cuadrática para calcular todos los valores para los cuales \left( p+4 \right)^2 - 8 > 0, pero resultará más fácil buscar los valores para los cuales sucede lo contrario, y descartar dichos valores.

Podemos tantear los valores de p para los cuales \left( p+4 \right)^2 \leq 8 y estos son: -2, -3, -4, -5 y -6; pues, si consideramos alguno de estos valores, digamos p=-2, tenemos que

\left( -2+4 \right)^2 < 8

\Rightarrow \left( 2 \right)^2 < 8

\Rightarrow 4 < 8

Entonces, retomando la pregunta original: «Si la ecuación tiene dos raíces reales diferentes, ¿cuál es la suma de los valores enteros que p puede tomar?«, los valores que p puede tomar son todos los enteros mayores que -2 o todos los valores enteros menores que -6, es decir, todos los valores de p tales que

p \in (-\infty,-6) \cup (-2,\infty), con p \in \mathbb{Z}

pero no tiene sentido considerar la suma de todos estos valores.

Anuncios

Aunque si queremos darle la vuelta a la cosa, podemos darnos cuenta que al sumar los números que no cumplen con la condición, es decir, -2, -3, -4, -5 y -6; y los sumamos, el resultado será el siguiente:

-2 -3 -4  -5 -6 = -20

Que es justamente la opción «A)» planteada entre las soluciones.