Propiedades de las Potencias

A continuación se presentará una lista de algunas propiedades de la potencia de un número, del producto y la división. Sean a y b números reales; m y n números naturales, entonces

  • a^0 = 1
  • a^1 = a
  • a^m \cdot a^n = a^{m+n}
  • (a^m)^n = a^{m \cdot n}
  • (a \cdot b)^n = a^n \cdot b^n
  • a^{-1} = \dfrac{1}{a}, \ a \neq 0
  • a^{-n} = \dfrac{1}{a^n}, \ a \neq 0
  • \dfrac{a^m}{a^n} = a^{m-n}, \ a \neq 0
  • \dfrac{a^m}{a^n} = \dfrac{1}{a^{n-m}}, \ a \neq 0
  • \left( \dfrac{a}{b} \right)^n = \dfrac{a^n}{b^n}, \ b \neq 0

Estas propiedades se pueden usar para simplificar o expandir expresiones algebraicas, es decir, aquellas que se expresan como suma, resta, producto y división de números reales. Veamos en los siguientes ejemplos como usar estas propiedades.

Ejemplos

Ejemplo 1

Simplifique la expresión 2^2 \cdot 2^3 usando únicamente las propiedades de las potencias.

Notamos que los factores involucrados tienen la misma base, por lo tanto, podemos sumar sus exponentes,

2^7 \cdot 2^3 = 2^{7+3} = 2^{10}

Ejemplo 2

Simplifique la expresión 3^4 \cdot 3 usando únicamente las propiedades de las potencias.

Notamos que los factores involucrados tienen la misma base, por lo tanto, podemos sumar sus exponentes considerando que 3 = 3^1,

3^4 \cdot 3^1 = 3^{4+1} = 3^5

Ejemplo 3

Simplifique la expresión 9^5 \cdot 9^2 \cdot 9^{10} usando únicamente las propiedades de las potencias.

Notamos que los factores involucrados tienen la misma base, por lo tanto, podemos sumar sus exponentes,

9^5 \cdot 9^2 \cdot 9 = 9^{5+2+1} = 9^{8}

Finalmente, podemos descomponer el número 9 en factores primos para obtener que

9^{8} = \left( 3^2 \right)^{8} = 3^{2 \cdot 8} = 3^{16}

Ejemplo 4

Simplifique la expresión 3^{4} \cdot 3^{2} \cdot 5^{6} usando únicamente las propiedades de las potencias.

Sumamos los exponentes de los factores con la misma base,

3^4 \cdot 3^2 \cdot 5^{6} = 3^{4+2} \cdot 5^{6} = 3^{6} \cdot 5^{6}

Como ambas bases tienen el mismo exponente, podemos agrupar ambas bases bajo el mismo exponente,

3^{6} \cdot 5^{6} = \left( 3 \cdot 5 \right)^{6}

Ejemplo 5

Simplifique la expresión \left( 7^{9} \cdot 7^{-2} \cdot 7^{5} \right)^{2} usando únicamente las propiedades de las potencias.

Sumamos los exponentes de los factores con la misma base,

\left( 7^{9} \cdot 7^{-2} \cdot 7^{5} \right)^{2} = \left( 7^{9-2+5} \right)^{2} = \left( 7^{12} \right)^{2}

Multiplicamos el exponente que está fuera del paréntesis con el exponente que está dentro del paréntesis

\left( 7^{12} \right)^{2} =7^{12 \cdot 2} = 7^{24}

Ejemplo 6

Simplifique la expresión \frac{2^5}{2^3} usando únicamente las propiedades de las potencias.

Notamos que los elementos involucrados tienen la misma base, por lo tanto, podemos restar sus exponentes,

\frac{2^5}{2^3} = 2^{5-3} = 2^{2}

Ejemplo 7

Simplifique la expresión \frac{4^{7} \cdot 3^{-15} \cdot 3^{4}}{4^{3} \cdot 4^{5} \cdot 3^{-20}} usando únicamente las propiedades de las potencias.

Sumamos los exponentes de los factores con la misma base,

\frac{4^{7} \cdot 3^{-15} \cdot 3^{4}}{4^{3} \cdot 4^{5} \cdot 3^{-20}} = \frac{4^{7} \cdot 3^{-15+4}}{4^{3+5} \cdot 3^{-20}} = \frac{4^{7} \cdot 3^{-11}}{4^{8} \cdot 3^{-20}}

Separamos las fracciones para agrupar las divisiones que tienen la misma base

\frac{4^{7} \cdot 3^{-11}}{4^{8} \cdot 3^{-20}} = \frac{4^{7}}{4^{8}} \cdot \frac{3^{-11}}{3^{-20}}

Restamos los exponentes de los factores con la misma base,

\frac{4^{7}}{4^{8}} \cdot \frac{3^{-11}}{3^{-20}} = 4^{7-8} \cdot 3^{-11-(-20)} = 4^{-1} \cdot 3^{9}

Descomponemos el número 4 en factores primos para obtener que

\left( 2^2 \right)^{-1} \cdot 3^{9} = 2^{-2} \cdot 3^{9}

Finalmente, podemos reescribir la expresión 2^{-2} como \frac{1}{2^{2}} para obtener la siguiente fracción

2^{-2} \cdot 3^{9} = \frac{1}{2^2} \cdot 3^{9} = \frac{3^9}{2^2}


Un comentario en “Propiedades de las Potencias

¿Tiendes dudas? ¿Requieres más ejemplos? No dudes en escribir.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios .