Ecuaciones Exponenciales

Al estudiar las propiedades de las potencias, resulta de particular interés el caso en que fijamos la base y variamos el exponente, a las expresiones que definen este tipo de situaciones las llamamos expresiones exponenciales. Formalmente, si consideramos un valor desconocido x y una base a, entonces

a^{x}

Será una expresión exponencial de base a. De forma particular, si consideramos a=2 tendríamos una expresión exponencial de base dos expresada de la siguiente forma

2^{x}

Las expresiones exponenciales cumplirán con las mismas propiedades que se han definido para las potencias, pero el caso interesante resulta cuando establecemos igualdades que involucran expresiones exponenciales, pues si consideramos la siguiente ecuación

a^x = b

Diremos que esta es una ecuación exponencial y debemos desarrollar un método que nos permita calcular la solución de este tipo de ecuaciones. Particularmente, si consideramos la ecuación

2^x = 8

La solución salta a la vista, pues sabiendo que dos elevado al cubo es igual a ocho, entonces concluimos que el valor de x que satisface la igualdad es x=3. Sin embargo, la solución no siempre será tan clara, así que debemos recurrir a las propiedades de las potencias para poder encontrar la solución.

Veamos como aplicar las propiedades de las potencias para calcular la solución de algunas ecuaciones exponenciales.

Anuncios

Ejemplos

Ejemplo 1

Calcule la solución de la siguiente ecuación exponencial:

3^x = 81

Si bien, la solución de esta ecuación se puede deducir de forma inmediata, una de las técnicas para calcular este tipo de ecuaciones es descomponer los números involucrados como productos de factores primos. Entonces, descomponiendo 27, tenemos que

3^x = 3^4

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

x = 4

Ejemplo 2

Calcule la solución de la siguiente ecuación exponencial:

5^{x+1} = 125

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo 125, tenemos que

5^{x+1} = 5^3

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

x+1 = 3 \Rightarrow x = 3 -1 \Rightarrow x = 2

Anuncios

Ejemplo 3

Calcule la solución de la siguiente ecuación exponencial:

4 \cdot 2^x = 128

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo 128, tenemos que

2^2 \cdot 2^x = 2^7

Al multiplicar factores que tienen la misma base, sumamos los exponentes

2^{2+x} = 2^7

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

2+x = 7 \Rightarrow x = 7 - 2 \Rightarrow x = 5

Ejemplo 4

Calcule la solución de la siguiente ecuación exponencial:

49^x \cdot 7^5 = 343

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo 128, tenemos que

\left(7^2 \right)^x \cdot 7^5 = 7^3

Si tenemos una expresión elevada a un exponente, y a su vez, esta está elevada a otro exponente, multiplicamos los exponentes

7^{2x} \cdot 7^5 = 7^3

Al multiplicar factores que tienen la misma base, sumamos los exponentes

7^{2x+5} = 7^3

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

2x+5 = 3 \Rightarrow 2x = 3 - 5 \Rightarrow 2x = -2 \Rightarrow x = -\frac{2}{2} \Rightarrow x = -1

Anuncios

Ejemplo 5

Calcule la solución de la siguiente ecuación exponencial:

49^x \cdot 7^5 = 343

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo 128, tenemos que

\left(7^2 \right)^x \cdot 7^5 = 7^3

Si tenemos una expresión elevada a un exponente, y a su vez, esta está elevada a otro exponente, multiplicamos los exponentes

7^{2x} \cdot 7^5 = 7^3

Al multiplicar factores que tienen la misma base, sumamos los exponentes

7^{2x+5} = 7^3

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

2x+5 = 3 \Rightarrow 2x = 3 - 5 \Rightarrow 2x = -2 \Rightarrow x = -\frac{2}{2} \Rightarrow x = -1

Ejemplo 6

Calcule la solución de la siguiente ecuación exponencial:

81^x \cdot 9^4 = 27^x \cdot 3^2

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo 128, tenemos que

\left( 3^4 \right)^x \cdot \left( 3^2 \right)^4 = \left( 3^3 \right)^x \cdot 3^2

Si tenemos una expresión elevada a un exponente, y a su vez, esta está elevada a otro exponente, multiplicamos los exponentes

3^{4x} \cdot 3^{8} = 3^{3x} \cdot 3^2

Al multiplicar factores que tienen la misma base, sumamos los exponentes

3^{4x+8} = 3^{3x+2}

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

4x+8 = 3x+2 \Rightarrow 4x - 3x = 2 - 8 \Rightarrow x = -6

Anuncios

Ejemplo 7

Calcule la solución de la siguiente ecuación exponencial:

8^x \cdot \frac{1}{16} = \frac{1}{32^x} \cdot 4^5

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo $128$, tenemos que

\left( 2^3 \right)^x \cdot \frac{1}{2^4} = \frac{1}{\left( 2^5 \right)^x} \cdot \left( 2^2 \right)^5

Si tenemos una expresión elevada a un exponente, y a su vez, esta está elevada a otro exponente, multiplicamos los exponentes. Además, aquellos elementos que están el denominador los podemos reescribir como numeradores cambiando el signo del exponente

2^{3x} \cdot 2^{-4} = 2^{-5x} \cdot 2^{10}

Al multiplicar factores que tienen la misma base, sumamos los exponentes

2^{3x-4} = 2^{-5x+10}

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

3x-4 = -5x+10 \Rightarrow 3x + 5x = 10 + 4 \Rightarrow 8x = 14 \Rightarrow x = \frac{7}{4}


Ejercicios Propuestos de Expresiones Algebraicas

Operaciones Básicas

Simplifique las siguientes expresiones efectuando las operaciones básicas. Recuerde tomar en cuenta la jerarquía entre las operaciones.

  1. 90 + 58 \cdot 13
  2. 54 + 3 \cdot 48
  3. ( 11 + 52) \cdot 13
  4. ( 72 + 19) \cdot 88
  5. 78 + ( 50 + 54) \cdot 72
  6. 5 + ( 73 - 84) \cdot 37
  7. 4^2 + ( 2 + 7) \cdot 4
  8. 2^3 + ( 6 - 3) \cdot 7
  9. 53 + [ 9^3 + ( 4 + 8) \cdot 2 ]
  10. 62 - [ 4^2 + ( 9 + 6) \cdot 6 ]
  11. 7 \cdot [ 4^3 + ( 7 + 1) \cdot 2 ] + 17
  12. 8 \cdot [ 2^2 - ( 1 + 3) \cdot 5 ] - 25
  13. (7^2 + 56 )  \cdot {6 + [ 6^2 + ( 5 + 6) \cdot 7 ] + 24}
  14. (2^2 - 69 )  \cdot {2 + [ 3^2 + ( 7 + 6) \cdot 7 ] - 71}
  15. \dfrac{ 68 + 96 \cdot 61 }{ 49 + 13 \cdot 78 }
  16. \dfrac{ 98 + 10 \cdot 28 }{ 11 - 82 \cdot 73 }
  17. 73 + 84 \cdot \dfrac{ 42 }{ 78 + 29 \cdot 69 }
  18. 8 + 85 \cdot \dfrac{ 1 }{ 11 - 39 \cdot 59 }
  19. \dfrac{ 32 + [ 8^2 + ( 10 + 1) \cdot 6 ] }{ 19 + [ 4^3 + ( 4 + 4) \cdot 5 ] }
  20. \dfrac{ 62 - [ 8^3 + ( 5 + 9) \cdot 2 ] }{ 54 - [ 10^3 - ( 2 + 4) \cdot 7 ] }
  21. 81 + 8^2 + \dfrac{ ( 1 - 8) \cdot 8 ] }{ 6 - [ 8^2 - ( 6 + 4) \cdot 8 ] }
  22. 89 + 7^3 + \dfrac{ ( 4 - 3) \cdot 8 ] }{ 88 - [ 8^3 - ( 7 + 3) \cdot 1 ] }
  23. \dfrac{ (4^3 - 68 )  \cdot {7 + [ 5^3 - ( 1 - 9) \cdot 6 ] + 52} }{ (2^3 - 91 )  \cdot {4 + [ 3^3 - ( 5 - 5) \cdot 10 ] + 19} }
  24. \dfrac{ (10^2 - 37 )  \cdot {10 + [ 9^2 - ( 10 - 4) \cdot 5 ] + 89} }{ (4^2 - 37 )  \cdot {10 + [ 9^3 - ( 4 - 10) \cdot 8 ] + 49} }
  25. (5^3 + 98 )  + \dfrac{ 3\cdot{5 + [ 9^2 + ( 2 + 10) \cdot 9 ] + 20} }{ (9^3 + 48 )  \cdot {2 + [ 6^3 + ( 1 + 4) \cdot 10 ] + 95} }
  26. (3^2 + 42 )  + \dfrac{ 7\cdot{3 + [ 2^3 + ( 1 + 7) \cdot 3 ] + 90} }{ (8^3 + 32 )  \cdot {8 + [ 3^2 + ( 1 + 10) \cdot 9 ] + 82} }

Potencias y Radicales

Simplifique las siguientes expresiones reescribiéndolas como producto de factores primos usando las propiedades de las potencias.

  1. 78
  2. 72
  3. 28 \cdot 30
  4. 24 \cdot 14
  5. 15^2 \cdot 25^5
  6. 16^3 \cdot 14^4
  7. (17 \cdot 25)^5
  8. (16 \cdot 20)^4
  9. (17^{-1} \cdot 25^{14})^5
  10. (16^{-3} \cdot 20^{15})^4
  11. \sqrt[4]{76}
  12. \sqrt[6]{115}
  13. \sqrt{15^2} \cdot \sqrt[3]{25^5}
  14. \sqrt[3]{16^3} \cdot \sqrt[4]{14^4}
  15. \sqrt[3]{27 \cdot 30}
  16. \sqrt[5]{24 \cdot 16}
  17. \dfrac{18}{3}
  18. \dfrac{24}{8}
  19. \dfrac{18^{10}}{3^5}
  20. \dfrac{24^9}{8^6}
  21. \dfrac{12^{-4}}{3^5}
  22. \dfrac{24^{-3}}{8^6}
  23. \dfrac{28 \cdot 30}{24 \cdot 14}
  24. \dfrac{60 \cdot 20}{63 \cdot 96}
  25. \dfrac{(17 \cdot 25)^5}{(16 \cdot 20)^4}
  26. \dfrac{(52 \cdot 21)^3}{(22 \cdot 55)^2}
  27. \dfrac{(17^{-1} \cdot 25^{14})^5}{(16^{-3} \cdot 20^{15})^4}
  28. \dfrac{(52^{-5} \cdot 41^{23})^3}{(22^{-7} \cdot 85^{12})^2}
  29. \dfrac{\sqrt[4]{76}}{\sqrt[6]{115}}
  30. \dfrac{\sqrt[8]{49}}{\sqrt[10]{90}}
  31. \dfrac{\sqrt{15^2} \cdot \sqrt[3]{25^9}}{\sqrt[3]{16^3} \cdot \sqrt[4]{14^4}}
  32. \dfrac{\sqrt[5]{18^4} \cdot \sqrt[6]{20^7}}{\sqrt[8]{22^5} \cdot \sqrt[6]{44^3}}
  33. \dfrac{\sqrt[3]{27 \cdot 30}}{\sqrt[5]{24 \cdot 16}}
  34. \dfrac{\sqrt[7]{62 \cdot 20}}{\sqrt[9]{63 \cdot 98}}

Logaritmos

Simplifique las siguientes expresiones reescribiéndolas usando las propiedades de las potencias y logaritmos.

  1. \log_2\big( 78 \big)
  2. \log_3\big( 72 \big)
  3. \log_7\big( 24 \cdot 14 \big)
  4. \log_8\big( 60 \cdot 20 \big)
  5. \log_{10}\big(  15^2 \cdot 25^5 \big)
  6. \log_{12}\big(  16^3 \cdot 14^4 \big)
  7. \log_2\big(  (17 \cdot 25)^5 \big)
  8. \log_4\big(  (16 \cdot 20)^4 \big)
  9. \log_3\big(  (17^{-1} \cdot 25^{14})^5 \big)
  10. \log_5\big(  (16^{-3} \cdot 20^{15})^4 \big)
  11. \log_2\big(  \sqrt[4]{76} \big)
  12. \log_3\big(  \sqrt[6]{115} \big)
  13. \log_4\big(  \sqrt{15^2} \cdot \sqrt[3]{25^5} \big)
  14. \log_5\big(  \sqrt[3]{16^3} \cdot \sqrt[4]{14^4} \big)
  15. \log_2\big(  \sqrt[3]{27 \cdot 30} \big)
  16. \log_3\big(  \sqrt[5]{24 \cdot 16} \big)
  17. \log_2 \left( \dfrac{18}{3} \right)
  18. \log_3 \left( \dfrac{24}{8} \right)
  19. \log_6 \left( \dfrac{18^{10}}{3^5} \right)
  20. \log_7 \left( \dfrac{24^9}{8^6} \right)
  21. \log_2 \left( \dfrac{12^{-4}}{3^5} \right)
  22. \log_4 \left( \dfrac{24^{-3}}{8^6} \right)
  23. \log_3 \left( \dfrac{28 \cdot 30}{24 \cdot 14} \right)
  24. \log_5 \left( \dfrac{60 \cdot 20}{63 \cdot 96} \right)
  25. \log_2 \left( \dfrac{(17 \cdot 25)^5}{(16 \cdot 20)^4} \right)
  26. \log_5 \left( \dfrac{(52 \cdot 21)^3}{(22 \cdot 55)^2} \right)
  27. \log_9 \left( \dfrac{(17^{-1} \cdot 25^{14})^5}{(16^{-3} \cdot 20^{15})^4} \right)
  28. \log_8 \left( \dfrac{(52^{-5} \cdot 41^{23})^3}{(22^{-7} \cdot 85^{12})^2} \right)
  29. \log_5 \left( \dfrac{\sqrt[4]{76}}{\sqrt[6]{115}} \right)
  30. \log_4 \left( \dfrac{\sqrt[8]{49}}{\sqrt[10]{90}} \right)
  31. \log_3 \left( \dfrac{\sqrt{15^2} \cdot \sqrt[3]{25^9}}{\sqrt[3]{16^3} \cdot \sqrt[4]{14^4}} \right)
  32. \log_6 \left( \dfrac{\sqrt[5]{18^4} \cdot \sqrt[6]{20^7}}{\sqrt[8]{22^5} \cdot \sqrt[6]{44^3}} \right)
  33. \log_4 \left( \dfrac{\sqrt[3]{27 \cdot 30}}{\sqrt[5]{24 \cdot 16}} \right)
  34. \log_8 \left( \dfrac{\sqrt[7]{62 \cdot 20}}{\sqrt[9]{63 \cdot 98}} \right)

Expresiones Algebraicas

Factorice y simplifique las siguientes expresiones algebraicas.

  1. 3x + 3
  2. 10x + 10
  3. 5x + 5 + 5\sqrt[]{5}
  4. 10x + 10 + 10\sqrt[3]{6}
  5. x^2 - 1
  6. x^2 - 4
  7. 10x^2 - 50
  8. 3x^2 - 18
  9. x^4 - 1
  10. x^4 - 16
  11. x^3 - x
  12. x^4 - x^2
  13. x^2 + 5x + 6
  14. x^2 + 6x + 5
  15. x^2 + 5x - 14
  16. x^2 + 4x - 32
  17. 2x^2 + 16x + 24
  18. 3x^2 + 30x + 72
  19. 5x^2 - 15x - 200
  20. 6x^2 - 30x - 216
  21. \dfrac{3x + 3}{3}
  22. \dfrac{10x + 10}{10}
  23. \dfrac{3x + 3}{x+1}
  24. \dfrac{10x + 20}{x+2}
  25. \dfrac{x^2 - 1}{x+1}
  26. \dfrac{x^2 - 4}{x-2}
  27. \dfrac{10x^2 - 50}{10}
  28. \dfrac{3x^2 - 18}{3}
  29. \dfrac{x^4 - 1}{x+1}
  30. \dfrac{x^4 - 16}{x-2}
  31. \dfrac{x^2 + 5x + 6}{x+3}
  32. \dfrac{x^2 + 6x + 5}{x+1}
  33. \dfrac{2x^2 + 16x + 24}{x+2}
  34. \dfrac{3x^2 + 30x + 72}{x+6}
  35. \dfrac{x^2 + 5x - 14}{x^2 + x - 42}
  36. \dfrac{x^2 + 4x - 32}{x^2 + 6x + 16}

Propiedades de las Potencias

A continuación se presentará una lista de algunas propiedades de la potencia de un número, del producto y la división. Sean a y b números reales; m y n números naturales, entonces

1. a^0 = 1, todo número elevado a la cero es igual a uno, esto aplica incluso si a=0.

2. a^1 = a, todo número real se puede expresar con exponente.

3. a^m \cdot a^n = a^{m+n}, al multiplicar dos números que tienen la misma base, mantenemos la misma base y sumamos los exponentes. Esto se debe a que

a^m \cdot a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{m-veces} \cdot \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-veces} = \underbrace{a \cdot a \cdot \ldots \cdot a}_{(m+n)-veces}

4. (a^m)^n = a^{m \cdot n}, si tenemos un número elevado a una potencias y a su vez esta expresión está elevada a una potencias, entonces multiplicamos las potencias. Esto se debe a

(a^m)^n = \underbrace{a^m \cdot a^m \cdot \ldots \cdot a^m}_{n-veces} = a^{\overbrace{m+m+\ldots+m}^{n-veces}} = a^{m \cdot n}

5. (a \cdot b)^n = a^n \cdot b^n, si un producto está elevado a una potencia, podemos distribuir el exponente entre cada uno de los elementos del producto. Esto se debe a

(a \cdot b)^n = \underbrace{(a \cdot b) \cdot (a \cdot b) \cdot \ldots \cdot (a \cdot b)}_{n-veces} = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-veces} \cdot \underbrace{b \cdot b \cdot \ldots \cdot b}_{n-veces} = a^n \cdot b^n

Anuncios

6. a^{-1} = \dfrac{1}{a}, \ a \neq 0, el inverso multiplicativo de todo número distinto de cero se puede expresar como el número con exponente menos uno (-1) o como el cociente de uno entre ese número.

7. a^{-n} = \dfrac{1}{a^n}, \ a \neq 0, todo número distinto de cero con una potencia negativa, se puede reescribir como uno sobre el mismo número pero con potencia positiva.

8. \dfrac{a^m}{a^n} = a^{m-n}, \ a \neq 0, al dividir dos números que tienen la misma base, mantenemos la misma base y restamos los exponentes, el exponente de arriba menos el de abajo. Supongamos que m > n para entender esta idea, entonces, esto se debe a que

\dfrac{a^m}{a^n} = \dfrac{\overbrace{a \cdot a \cdot \ldots \cdot a}^{m-veces} }{ \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-veces}} = \dfrac{\overbrace{a \cdot a \cdot \ldots \cdot a}^{n-veces} }{ \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-veces}} \cdot \dfrac{\overbrace{a \cdot a \cdot \ldots \cdot a}^{(m-n)-veces}}{1} = a^{m-n}

9. \dfrac{a^m}{a^n} = \dfrac{1}{a^{n-m}}, \ a \neq 0, al dividir dos números que tienen la misma base, mantenemos la misma base en el denominador y restamos los exponentes, el exponente de abajo menos el de arriba. Supongamos que m < n para entender esta idea, entonces, esto se debe a que

\dfrac{a^m}{a^n} = \dfrac{\overbrace{a \cdot a \cdot \ldots \cdot a}^{m-veces} }{ \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-veces}} = \dfrac{\overbrace{a \cdot a \cdot \ldots \cdot a}^{m-veces} }{ \underbrace{a \cdot a \cdot \ldots \cdot a}_{m-veces}} \cdot \dfrac{1}{\underbrace{a \cdot a \cdot \ldots \cdot a}_{(n-m)-veces}} = \dfrac{1}{a^{n-m}}

10. \left( \dfrac{a}{b} \right)^n = \dfrac{a^n}{b^n}, \ b \neq 0, si un cociente está elevado a una potencia, podemos distribuir el exponente entre cada uno de los elementos del cociente. Esto se debe a

\left( \dfrac{a}{b} \right)^n = \underbrace{\dfrac{a}{b} \cdot \dfrac{a}{b} \cdot \ldots \cdot \dfrac{a}{b}}_{n-veces} = \dfrac{ \overbrace{a \cdot a \cdot \ldots \cdot a}^{n-veces} }{ \underbrace{b \cdot b \cdot \ldots \cdot b}_{n-veces}} = \dfrac{a^n}{b^n}


Esta lista es citada por algunos autores como la Ley de las Potencias o Ley de los Exponentes, pero estas en realidad, son propiedades que se deducen del producto entre números reales. De forma resumida, tenemos que

Lista de las Propiedades de las Potencias

a^0 = 1

a^1 = a

a^m \cdot a^n = a^{m+n}

(a^m)^n = a^{m \cdot n}

(a \cdot b)^n = a^n \cdot b^n

a^{-1} = \dfrac{1}{a}, \ a \neq 0

\left( \dfrac{a}{b} \right)^{-1} = \dfrac{b}{a}, \ a,b \neq 0

a^{-n} = \dfrac{1}{a^n}, \ a \neq 0

\dfrac{a^m}{a^n} = a^{m-n}, \ a \neq 0

\dfrac{a^m}{a^n} = \dfrac{1}{a^{n-m}}, \ a \neq 0

\left( \dfrac{a}{b} \right)^n = \dfrac{a^n}{b^n}, \ b \neq 0

Estas propiedades se pueden usar para simplificar o expandir expresiones algebraicas, es decir, aquellas que se expresan como suma, resta, producto y división de números reales. Veamos en los siguientes ejemplos cómo usar estas propiedades.

Anuncios

Ejemplos

Ejemplo 1

Simplifique la expresión 2^2 \cdot 2^3 usando únicamente las propiedades de las potencias.

Notamos que los factores involucrados tienen la misma base, por lo tanto, podemos sumar sus exponentes,

2^7 \cdot 2^3 = 2^{7+3} = 2^{10}

Ejemplo 2

Simplifique la expresión 3^4 \cdot 3 usando únicamente las propiedades de las potencias.

Notamos que los factores involucrados tienen la misma base, por lo tanto, podemos sumar sus exponentes considerando que 3 = 3^1,

3^4 \cdot 3^1 = 3^{4+1} = 3^5

Ejemplo 3

Simplifique la expresión 9^5 \cdot 9^2 \cdot 9^{10} usando únicamente las propiedades de las potencias.

Notamos que los factores involucrados tienen la misma base, por lo tanto, podemos sumar sus exponentes,

9^5 \cdot 9^2 \cdot 9 = 9^{5+2+1} = 9^{8}

Finalmente, podemos descomponer el número 9 en factores primos para obtener que

9^{8} = \left( 3^2 \right)^{8} = 3^{2 \cdot 8} = 3^{16}

Ejemplo 4

Simplifique la expresión 3^{4} \cdot 3^{2} \cdot 5^{6} usando únicamente las propiedades de las potencias.

Sumamos los exponentes de los factores con la misma base,

3^4 \cdot 3^2 \cdot 5^{6} = 3^{4+2} \cdot 5^{6} = 3^{6} \cdot 5^{6}

Como ambas bases tienen el mismo exponente, podemos agrupar ambas bases bajo el mismo exponente,

3^{6} \cdot 5^{6} = \left( 3 \cdot 5 \right)^{6}

Anuncios

Ejemplo 5

Simplifique la expresión \left( 7^{9} \cdot 7^{-2} \cdot 7^{5} \right)^{2} usando únicamente las propiedades de las potencias.

Sumamos los exponentes de los factores con la misma base,

\left( 7^{9} \cdot 7^{-2} \cdot 7^{5} \right)^{2} = \left( 7^{9-2+5} \right)^{2} = \left( 7^{12} \right)^{2}

Multiplicamos el exponente que está fuera del paréntesis con el exponente que está dentro del paréntesis

\left( 7^{12} \right)^{2} =7^{12 \cdot 2} = 7^{24}

Ejemplo 6

Simplifique la expresión \frac{2^5}{2^3} usando únicamente las propiedades de las potencias.

Notamos que los elementos involucrados tienen la misma base, por lo tanto, podemos restar sus exponentes,

\frac{2^5}{2^3} = 2^{5-3} = 2^{2}

Ejemplo 7

Simplifique la expresión \frac{4^{7} \cdot 3^{-15} \cdot 3^{4}}{4^{3} \cdot 4^{5} \cdot 3^{-20}} usando únicamente las propiedades de las potencias.

Sumamos los exponentes de los factores con la misma base,

\frac{4^{7} \cdot 3^{-15} \cdot 3^{4}}{4^{3} \cdot 4^{5} \cdot 3^{-20}} = \frac{4^{7} \cdot 3^{-15+4}}{4^{3+5} \cdot 3^{-20}} = \frac{4^{7} \cdot 3^{-11}}{4^{8} \cdot 3^{-20}}

Separamos las fracciones para agrupar las divisiones que tienen la misma base

\frac{4^{7} \cdot 3^{-11}}{4^{8} \cdot 3^{-20}} = \frac{4^{7}}{4^{8}} \cdot \frac{3^{-11}}{3^{-20}}

Restamos los exponentes de los factores con la misma base,

\frac{4^{7}}{4^{8}} \cdot \frac{3^{-11}}{3^{-20}} = 4^{7-8} \cdot 3^{-11-(-20)} = 4^{-1} \cdot 3^{9}

Descomponemos el número 4 en factores primos para obtener que

\left( 2^2 \right)^{-1} \cdot 3^{9} = 2^{-2} \cdot 3^{9}

Finalmente, podemos reescribir la expresión 2^{-2} como \frac{1}{2^{2}} para obtener la siguiente fracción

2^{-2} \cdot 3^{9} = \frac{1}{2^2} \cdot 3^{9} = \frac{3^9}{2^2}


Descomposición en Factores Primos

Diremos que un número entero mayor que 1 es un número es primo si es divisible sólo entre él mismo y el número uno, por ejemplo, el número 7 es un número primo pues sus divisores exactos son sólo 7 y 1. Pues si consideramos todos los números enteros menores que 7 y vemos las divisiones \frac{7}{1}, \, \frac{7}{2}, \, \frac{7}{3}, \, \frac{7}{4}, \, \frac{7}{5}, \, \frac{7}{6}, \, \frac{7}{7} es posible determinar que las únicas divisiones exactas son entre 1 y 7.

Los números primos menores que 100 son: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. Esta lista se extiende de forma indefinida y para determinar nuevos números primos se hace uso de súper computadoras.

Si un número entero mayor que 1 no es primo, se llama número compuesto y en ocasiones, es necesario reescribir números compuestos como el producto de todos los números primos que lo componen con el fin de simplificar expresiones muy complejas, a esto lo llamaremos descomposición en factores primos.

En los siguientes ejemplos desarrollaremos una técnica que nos permite determinar todos los número primos (y sus potencias) que componen un número entero.

Anuncios

Ejemplos

Ejemplo 1

Descomponga el número 18 en todos factores primos.

El primer paso es escribir el número que se quiere descomponer y trazar una línea vertical a la derecha de él,

El siguiente paso es considerar el primer número primo que divide de forma exacta a este número, en este caso es 2 y lo escribimos en la derecha de la siguiente forma

El resultado de la división lo escribimos del lado izquierdo debajo del número original

El siguiente paso es considerar el primer número primo que divide de forma exacta al resultado, en este caso es 3 y lo escribimos en la derecha de la siguiente forma

El resultado de la división lo escribimos del lado izquierdo debajo del resultado anterior

El siguiente paso es considerar el primer número primo que divide de forma exacta al resultado, en este caso es 3 y lo escribimos en la derecha de la siguiente forma

El resultado de la división lo escribimos del lado izquierdo debajo del resultado anterior

Una vez que el resultado es igual a 1, concluimos que no hay más factores primos que componen al número original y lo podemos escribir de la siguiente forma

18 = 2 \cdot 3 \cdot 3 = 2 \cdot 3^2

Anuncios

Ejemplo 2

Descomponga el número 126 en todos factores primos.

El primer paso es escribir el número que se quiere descomponer y trazar una línea vertical a la derecha de él,

El siguiente paso es considerar el primer número primo que divide de forma exacta a este número, en este caso es 2 y lo escribimos en la derecha de la siguiente forma

El resultado de la división lo escribimos del lado izquierdo debajo del número original

El siguiente paso es considerar el primer número primo que divide de forma exacta al resultado, en este caso es 3 y lo escribimos en la derecha de la siguiente forma

El resultado de la división lo escribimos del lado izquierdo debajo del resultado anterior

El siguiente paso es considerar el primer número primo que divide de forma exacta al resultado, en este caso es 3 y lo escribimos en la derecha de la siguiente forma

El resultado de la división lo escribimos del lado izquierdo debajo del resultado anterior

El siguiente paso es considerar el primer número primo que divide de forma exacta al resultado, en este caso es 3 y lo escribimos en la derecha de la siguiente forma

El resultado de la división lo escribimos del lado izquierdo debajo del resultado anterior

Una vez que el resultado es igual a 1, concluimos que no hay más factores primos que componen al número original y lo podemos escribir de la siguiente forma

18 = 2 \cdot 3 \cdot 3 \cdot 7 = 2 \cdot 3^2 \cdot 7

Anuncios

Ejemplo 3

Descomponga el número 48 en todos factores primos.

Seguimos, de forma resumida, el procedimiento expuesto en los ejemplos anteriores para tener que

Una vez que hemos finalizado el procedimiento, podemos escribir el número original de la siguiente forma

48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 = 2^4 \cdot 3

Ejemplo 4

Descomponga el número 2100 en todos factores primos.

Seguimos, de forma resumida, el procedimiento expuesto en los ejemplos anteriores para tener que

Una vez que hemos finalizado el procedimiento, podemos escribir el número original de la siguiente forma

2100 = 2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 \cdot 7 = 2^2 \cdot 3 \cdot 5^2 \cdot 7


Potenciación

Al estudiar el producto entre números nos podemos encontrar con el producto de un número multiplicado por él mismo dos o más veces. Este tipo de productos tiene propiedades muy particulares. Formalmente, si a es un número real, definimos su n-ésima potencia como el producto de a multiplicado por él mismo n veces, donde n es un número natural, y lo denotamos la siguiente forma:

Potenciación, potencias base y exponente | totumat.com

Esta expresión se puede leer como a elevado a la n o formalmente, a elevada a la n-ésima potencia. También diremos que a es la base y n es el exponente.

Potenciación, potencias base y exponente | totumat.com

Veamos algunos ejemplos.

Anuncios

Ejemplos

Ejemplo 1

Indique el producto que se está definiendo en la expresión 5^{2}.

En este caso la base es igual a 5 y el exponente es igual a 2, entonces estamos multiplicando el número cinco por sí mismo dos veces de la siguiente forma:

5^{2} = 5 \cdot 5 = 25

Ejemplo 2

Indique el producto que se está definiendo en la expresión 2^{3}.

En este caso la base es igual a 2 y el exponente es igual a 3, entonces estamos multiplicando el número dos por sí mismo tres veces de la siguiente forma:

2^{3} = 2 \cdot 2 \cdot 2 = 8

Ejemplo 3

Indique el producto que se está definiendo en la expresión 7^{10}.

En este caso la base es igual a 7 y el exponente es igual a 10, entonces estamos multiplicando el número siete por sí mismo diez veces de la siguiente forma:

7^{10} = 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 = 282475249

Ejemplo 4

Indique el producto que se está definiendo en la expresión \left( \frac{1}{2} \right)^{6}.

En este caso la base es igual a \left( \frac{1}{2} \right) y el exponente es igual a 6, entonces estamos multiplicando el número un medio por sí mismo seis veces de la siguiente forma:

\left( \frac{1}{2} \right)^{6} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{64}