El Conjugado de una Suma

A continuación definiremos una expresión que está íntimamente relacionada con la diferencia de cuadrados, pues al encontrar la suma (o la resta según sea el caso) de dos números reales, podemos definir una expresión que nos permitirá escribir dicha resta como una diferencia de cuadrados.

Formalmente, Si a y b son dos números reales, el conjugado de la suma (a+b) está definido como (a-b). De igual forma, el conjugado de la resta (a-b) está definido como (a+b). Es decir, se cambia el signo que se encuentra entre ellos dos. La importancia del conjugado radica en que el producto de una suma por su conjugado es igual a una diferencia de cuadrados, es decir,

Esta igualdad se puede deducir efectuando la propiedad distributiva de los números reales, veamos entonces,

Este tipo de expresiones se encuentra a menudo en el desarrollo las operaciones algebraicas y se usa principalmente para simplificar operaciones, veamos en los siguientes ejemplos como identificar el conjugado de algunas expresiones:

Anuncios

Ejemplos

Ejemplo 1

Identifique el conjugado de 12 - 5. No tiene mucho sentido identificar el conjugado de esta expresión pues podemos simplemente efectuar la resta y obtener 7 como resultado.

Ejemplo 2

Identifique el conjugado de \sqrt{12} - 5. Notemos que uno de los sumando involucrados es raíz cuadrada de doce, por lo tanto no no se puede restar con cinco, entonces, concluimos que su conjugado es \sqrt{12} + 5.

Ejemplo 3

Identifique el conjugado de 3 + \sqrt{8}. Notemos que uno de los sumando involucrados es raíz cuadrada de ocho, por lo tanto no no se puede sumar con tres, entonces, concluimos que su conjugado es 3 - \sqrt{8}.

Ejemplo 4

Identifique el conjugado de 3x - 7. Notemos que uno de los sumando involucrados es tres por una incógnita, por lo tanto no se puede restar con siete, entonces, concluimos que su conjugado es 3x + 7.

Ejemplo 5

Identifique el conjugado de 15 + 4x. Notemos que uno de los sumando involucrados es cuatro por una incógnita, por lo tanto no se puede sumar con 15, entonces, concluimos que su conjugado es 15 - 4x.

Ejemplo 6

Identifique el conjugado de 6 + \sqrt{x+2}. Esta resta no se puede efectuar, entonces, concluimos que su conjugado es 6 - \sqrt{x+2}. Notando que el signo dentro de la raíz no cambia.


3 comentarios en “El Conjugado de una Suma

¿Tiendes dudas? ¿Requieres más ejemplos? No dudes en escribir.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios .