Resta de Fracciones

Sean a, b, c y d números enteros tales que b y d son distintos de cero. Definimos la resta de las fracciones \frac{a}{b} menos \frac{c}{d}, restando el producto de a por d menos el producto de b por c y dividiendo todo esto entre el producto de b por d, de la siguiente forma:

Una forma fácil de recordar esta suma para aquellos a los que se les presenta dificultad, es notar que al efectuar las operaciones se hace la forma de una \textbf{copa} tal como veremos a continuación

Veamos con algunos ejemplos como efectuar la resta entre fracciones.

Ejemplos

Ejemplo 1

Efectúe la resta de \frac{1}{2} menos \frac{3}{4}.

\frac{1}{2} - \frac{3}{4} = \frac{1 \cdot 4 - 2 \cdot 3}{2 \cdot 4} = \frac{4 - 6}{8} = \frac{-2}{8} = -\frac{2}{8}

Ejemplo 2

Efectúe la resta de \frac{7}{3} menos \frac{2}{5}.

\frac{7}{3} - \frac{2}{5} = \frac{7 \cdot 5 - 3 \cdot 2}{3 \cdot 5} = \frac{35 - 6}{15} = \frac{29}{15}

Ejemplo 3

Efectúe la resta de 1 menos \frac{4}{9}. Para efectuar esta resta debemos notar primero que el número 1 se puede escribir como la fracción \frac{1}{1}, entonces tenemos que

\frac{1}{1} - \frac{4}{9} = \frac{1 \cdot 9 - 1 \cdot 4}{1 \cdot 9} = \frac{9 - 4}{9} = \frac{5}{9}

Ejemplo 4

Efectúe la resta de \frac{3}{11} menos 6. Para efectuar esta resta debemos notar primero que el número 6 se puede escribir como la fracción \frac{6}{1}, entonces tenemos que

\frac{3}{11} - \frac{6}{1} = \frac{3 \cdot 1 - 11 \cdot 6}{11 \cdot 1} = \frac{3 - 66}{11} = \frac{-63}{11} = -\frac{63}{11}


Anuncio publicitario

3 comentarios en “Resta de Fracciones

¿Tienes alguna duda? Compártela en los comentarios.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.