Calculadora Científica | totumat.com

Herramientas Básicas de una Calculadora Científica

En mis años de experiencia docente a nivel universitario, he notado que si bien, la mayoría de los estudiantes tienen acceso a una calculadora científica, el uso que se le da no es mayor del que se le puede dar a una “calculadora bodeguera”, es decir, una de este tipo

MX-12B | Serie con valor agregado | HOGAR | Calculadoras | CASIO

La Calculadora CASIO fx-82MS

La calculadora más común encontrada en las aulas de clases, desde bachillerato hasta el nivel universitario, es la calculadora CASIO fx-82MS. Aunque es sencilla en comparación con otras calculadoras científicas, es muy versátil.

fx-82MS

Aparte de las operaciones de suma, resta, multiplicación y división. Veamos cuales son las operaciones básicas que se pueden efectuar con esta calculadora, pero además, veamos que con conocimientos matemáticos, varias de las opciones se pueden usar para hacer distintos tipos de operaciones.

Anuncios

Fracciones y Decimales

Las operaciones con fracciones o con decimales pueden resultar engorrosas para calcular a mano, afortunadamente, las calculadoras tienen una opción para reescribir fracciones como números decimales y viceversa. Para esto, se debe presionar el siguiente botón:

Este botón, reescribirá los números decimales como fracciones mixtas, particularmente para poder usar la opción correspondiente a las fracciones puras, se debe presionar la tecla SHITF previamente, pues con ella se pueden usar las opciones resaltadas en amarillo sobre cada tecla.

Potencias

El caso en el que más se usa una potencia en los cursos de matemáticas es cuando debemos elevar un número al cuadrado, seguido de esto, cuando debemos elevar un número al cubo. Para esto, existen dos botones dedicados.

Sin embargo, ¿qué haremos si queremos elevar un número a la 4? ¿O a la 10? ¿Y a la 7/5? Para esto, debemos usar el circunflejo… ¿El circunqué? El circunflejo es el signo (^) y de forma general, en el lenguaje matemático compucional, se usa para denotar una potencia.

Usando esta tecla, podemos calcular distintas potencias, de forma que

  • Si queremos calcular 6 elevado a la 4, entonces escribimos
    6^4.
  • Si queremos calcular 2 elevado a la 10, entonces escribimos
    2^10.
  • Si queremos calcular 4 elevado a la 7/5, entonces escribimos
    4^(7/5).

Nótese que en este último caso, se usaron paréntesis para escribir la potencia. Esto es para indicarle a la calculadora que primero debe hacer las operación que está dentro del paréntesis. El uso de los paréntesis para definir operaciones es necesario para no incurrir en errores de cálculo.

Radicales

El caso en el que más se usa un radical en los cursos de matemáticas es cuando debemos calcular la raíz cuadrada, seguido de esto, cuando debemos calcular la raíz cúbica. Para esto, existen dos botones dedicados.

Particularmente para poder usar la opción correspondiente a la raíz cúbica, se debe presionar la tecla SHITF previamente, pues con ella se pueden usar las opciones resaltadas en amarillo sobre cada tecla.

Sin embargo, ¿qué haremos si queremos calcular la raíz cuarta? ¿O a la raíz décima? ¿Y a la sétima de un número elevado a la 5? Para esto, debemos usar presionar SHIFT seguido de el circunflejo (^), pues con esto activamos la expresión \sqrt[x]{ \ }.

Usando esta tecla, podemos calcular distintas raíces, de forma que

  • Si queremos calcular la raíz cuarta de 6, entonces escribimos
    4\sqrt[x]{ \ }6.
  • Si queremos calcular la raíz décima de 2, entonces escribimos
    10\sqrt[x]{ \ }2.
  • Si queremos calcular la raíz quinta de 4 elevado a la 7, entonces escribimos
    5\sqrt[x]{ \ }(4^7).

Nótese que en este último caso, se usaron paréntesis para escribir la potencia. Esto es para indicarle a la calculadora que primero debe hacer las operación que está dentro del paréntesis. El uso de los paréntesis para definir operaciones es necesario para no incurrir en errores de cálculo.

También nos podemos fijar que la raíz quinta de 4 elevado a la 7 también se puede calcular usando 4^(7/5), esto se debe a que de acuerdo a las propiedades de las potencias y radicales, tenemos que

a^{\frac{m}{n}} = \sqrt[n]{a^m}

Anuncios

Logaritmos

Los logaritmos se usan con frecuencia para estudiar cambios proporcionales o porcentuales en conjuntos de datos. Usualmente se considera el logaritmo con base 10 o el logarimo con base \textit{\Large e}, este último conocido como el logaritmo neperiano o logaritmo natural. Para esto, existen dos botones dedicados.

Usando esta tecla, podemos calcular distintos logaritmos, de forma que

  • Si queremos el logaritmo base 10 de 6, entonces escribimos
    log6.
  • Si queremos el logaritmo base 10 de 2 elevado a la 5, entonces escribimos
    log(2^5).
  • Si queremos el logaritmo neperiano de 8, entonces escribimos
    ln8.
  • Si queremos el logaritmo neperiano de la raíz cúbica de 15, entonces escribimos
    ln(\sqrt[3]{ \ }15).

Nótese que en este último caso, se usaron paréntesis para escribir la potencia. Esto es para indicarle a la calculadora que primero debe hacer las operación que está dentro del paréntesis. El uso de los paréntesis para definir operaciones es necesario para no incurrir en errores de cálculo.

Calcular el logaritmo de cualquier base

Usualmente, las calculadoras científicas sólo permiten calcular el logaritmo base diez o el logaritmo neperiano. Sin embargo, debemos recordar la propiedad cambio de base, que indica que

$\log_a(b) = \dfrac{\log_c(b)}{\log_c(a)}$

Entonces, podemos calcular el logaritmo de cualquier base en la calculadora de la siguiente forma:

  • Si queremos el logaritmo base 3 de 2, entonces escribimos
    log2/log3.
  • Si queremos el logaritmo base 9 de 13, entonces escribimos
    log13/log9.
  • Si queremos el logaritmo base 12 de 33, entonces escribimos
    log(33)/log12.
  • Si queremos el logaritmo base 5 de 4+7, entonces escribimos
    log(4+7)/log5.

Exponenciales

Hay una potencia muy particular que debemos calcular con regularidad cuando se hacen desarrollos matemáticos y esta se presenta cuando operamos con la función exponencial. Usualmente se considera la base 10 o la base \textit{\Large e}. Para esto, existen dos botones dedicados.

Para poder usar estas opciones, se debe presionar la tecla SHITF previamente, pues con ella se pueden usar las opciones resaltadas en amarillo sobre cada tecla.

Usando esta tecla, podemos calcular distintas expresiones exponciales, de forma que

  • Si queremos 10 elevado a la 6, entonces escribimos
    10^x6.
  • Si queremos 10 elevado a la 2, entonces escribimos
    10^x2.
  • Si queremos 10 elevado a la 7/3, entonces escribimos
  • 10^x(7/3).
  • Si queremos \textit{\Large e} elevado a la 8, entonces escribimos
    \textit{\Large e}^x8.
  • Si queremos \textit{\Large e} elevado a la 15 + 5, entonces escribimos
    \textit{\Large e}^x(15+5).

Nótese que en este último caso, se usaron paréntesis para escribir la potencia. Esto es para indicarle a la calculadora que primero debe hacer las operación que está dentro del paréntesis. El uso de los paréntesis para definir operaciones es necesario para no incurrir en errores de cálculo.

Para definir directamente el número \textit{\Large e} tenemos dos opciones, podemos escribir \textit{\Large e}^x1 o podemos presionar el siguiente botón

Para poder usar estas opciones, se debe presionar la tecla ALPHA previamente, pues con ella se pueden usar las opciones resaltadas en rojo sobre cada tecla.

Usando esta tecla, podemos calcular distintas expresiones exponciales con base \textit{\Large e}, de forma que

  • Si queremos \textit{\Large e} elevado a la 3, entonces escribimos
    \textit{\Large e}^3.
  • Si queremos \textit{\Large e} elevado a la 1/2, entonces escribimos
    \textit{\Large e}^(1/2).
Anuncios

Guardar un número en la memoria de la calculadora

Al hacer recurrir varias veces un mismo cálculo, resulta engorroso tener que escribir la operación una y otra vez. Afortunadamente, las calculadoras cuentan una opción para guardar números o resultados de operaciones en una calculadora.

La opción STO denota la palabra en inglés storage, que se traduce como almacenamiento en español. La calculadora CASIO fx-82MS tiene seis espacios disponibles para almacenar en su memoria, estos son los correspondientes a A, B, C, D, E y F.

Almacenar un número en la memoria se efectúa en tres pasos sencillos. Supongamos que debe almacenar el número 3 en el espacio de memoria A. Entonces, debe presionar 3, seguido de STO (presionando previamente SHITF), seguido de la tecla correspondiente a A (sin presionar ALPHA):

Posteriormente, deberá aparecer en la pantalla lo siguiente:

3 \rightarrow A

De esta forma, si hacemos el llamado de A (presionando previamente ALPHA), este tendrá almacenado el valor 3. Entonces, si escribimos

7 + A

El resultado será igual a 10, pues es como sumar 7+3.

Aunque no pareciera muy útil para operaciones sencillas, esto resultará de utilidad en el caso que estemos evaluando un polinomio. Supongamos que usted está calculando los máximos y mínimos del polinomio P(x) = x^3 - 2x^2 -x +2 y uno de sus puntos críticos es x_1=\frac{2 + \sqrt{7}}{3}.

Para evalular el polinomio en esta expresión, lo más conveniente es guardarla en la memoria. Si queremos guardarla en el espacio B, seguimos los siguientes pasos

  • Escribimos la operación
    (2 + \sqrt{ \ }7)/3
  • Seguido de STO (presionando previamente SHITF)
  • Seguido de B (sin presionar ALPHA)

Posteriormente, deberá aparecer en la pantalla lo siguiente:

(2 + \sqrt{ \ }7)/3 \rightarrow B

Una vez que hemos almacenado este valor en memoria, podemos usarlo para evalular el polinomio en ese punto crítico, de la siguiente forma.

B^3 – 2B^2 -B +2


La Diferencia de Cuadrados

Al efectuar operaciones matemáticas es común toparse con restas entre dos números, sin embargo, al encontrar la resta de los cuadrados de dos números diremos que esta es una diferencia de cuadrados y es de nuestro particular interés porque a través de la propiedad distributiva, podemos expresarla como el producto de dos factores.

Formalmente, si a y b son dos números reales, entonces la diferencia de sus cuadrados será igual a la suma del primero más el segundo, multiplicado por la resta del primero por el segundo, es decir,

Esta igualdad se puede deducir efectuando la propiedad distributiva de los números reales, veamos entonces,

Este tipo de expresiones se encuentra a menudo en el desarrollo las operaciones algebraicas y se usa principalmente para factorizar operaciones, veamos en los siguientes ejemplos como aplicar esta operación:

Anuncios

Ejemplos

Ejemplo 1

Factorice la expresión 5^2 - 3^2. Notamos que en este caso, podemos simplemente aplicar la potencia cada uno de los sumandos y efectuar la resta directamente.

5^2 - 3^2 \ =\ 25 - 9

\ =\ 16

Ejemplo 2

Factorice la expresión x^2 - 9. Notamos que en este caso, uno de los sumandos es equis al cuadrado y el otro es nueve, así que no podemos efectuar la resta entre ellos así que aplicamos la diferencia de cuadrados notando que nueve es igual a tres al cuadrado.

x^2 - 9 \ =\ x^2 - 3^2

\ =\ (x-3)(x+3)

Ejemplo 3

Factorice la expresión x^2 - 2. Notamos que en este caso, uno de los sumandos es equis al cuadrado y el otro es dos, así que no podemos efectuar la resta entre ellos así que aplicamos la diferencia de cuadrados notando que dos se puede reescribir como 2 = \left( \sqrt{2} \right)^2.

x^2 - 2 \ =\ x^2 -\left( \sqrt{2} \right)^2

\ =\ \left(x-\sqrt{2}\right) \left(x+\sqrt{2}\right)

De esta forma, podemos notar que si la raíz cuadrada de un numero no es exacta, este se puede reescribir para poder usar la diferencia de cuadrados.

Anuncios

Ejemplo 4

Factorice la expresión 8 - x^6. Notamos que en este caso, uno de los sumandos es 8 y el otro es equis a la seis, así que no podemos efectuar la resta entre ellos así que aplicamos la diferencia de cuadrados notando que ocho se puede reescribir como 8 = \left( \sqrt{8} \right)^2 y equis a la seis como x^6 = \left( x^3 \right)^2.

8 - x^6 \ =\ \left( \sqrt{8} \right)^2 - \left(x^3 \right)^2

\ =\ \left(\sqrt{8}-x^3\right) \left(\sqrt{8}+x^3\right)

Ejemplo 5

Factorice la expresión 36x^4 - 5x^8. Notamos que en este caso, no podemos efectuar la resta entre ellos así que aplicamos la diferencia de cuadrados usando las observaciones expuestas en los ejemplos anteriores.

36x^4 - 5x^8 \ =\ \left( 6x^2 \right)^2 - \left( \sqrt{5}x^4 \right)^2

\ =\ \left(6x^2-\sqrt{5}x^4\right) \left(6x^2+\sqrt{5}x^4\right)


El producto notable

El producto notable es un caso particular de la propiedad distributiva que nos da como resultado el trinomio cuadrado perfecto y establece que, si a y b son dos números reales, el cuadrado de la suma de ellos dos es igual al primero al cuadrado más dos veces el producto del primero por el segundo más el segundo al cuadrado, es decir,

Esta igualdad se puede deducir efectuando la propiedad distributiva cuando multiplicamos la suma de dos números por esa misma suma, veamos entonces,

De igual forma, si a y b son dos números reales, el cuadrado de la resta entre ellos dos es igual al primero al cuadrado menos dos veces el producto del primero por el segundo más el segundo al cuadrado, es decir,

Esta igualdad se puede deducir efectuando la propiedad distributiva cuando multiplicamos la resta de dos números por esa misma resta, veamos entonces,

Este tipo de expresiones se encuentra a menudo en el desarrollo las operaciones algebraicas pues no siempre podremos efectuar la suma que se encuentra dentro de los paréntesis, veamos en los siguientes ejemplos como aplicar esta operación:

Ejemplos

Ejemplo 1

Aplique el producto notable para expandir la expresión (3 + 2)^2. Sumamos los dos elementos dentro del paréntesis y elevamos al cuadrado de la siguiente manera:

(3 + 2)^2
\ =\ 5^2
\ =\ 25

Ejemplo 2

Aplique el producto notable para expandir la expresión (3 + \sqrt{2})^2. Notemos que uno de los sumandos involucrados es la raíz cuadrada de dos, por lo tanto no se puede sumar con tres.

(3 + \sqrt{2})^2
\ =\ 3^2 + 2(3)(\sqrt{2}) + (\sqrt{2})^2
\ =\ 9 + 6\sqrt{2} + 2
\ =\ 11+6\sqrt{2}

Ejemplo 3

Aplique el producto notable para expandir la expresión (\sqrt[3]{6} - 4)^2. Notemos que uno de los sumandos involucrados es la raíz cúbica de seis, por lo tanto no se puede restar con cuatro.

(\sqrt[3]{6} - 4)^2
\ =\ (\sqrt[3]{6})^2 -2(\sqrt[3]{6})(4) + 4^2
\ =\ (\sqrt[3]{6})^2 -8\sqrt[3]{6} +16

Ejemplo 4

Aplique el producto notable para expandir la expresión (x+7)^2. Notemos que uno de los sumandos involucrados es una incógnita, por lo tanto no se puede sumar con siete.

(x+7)^2
\ =\ x^2 + 2(x)(7) + 7^2
\ =\ x^2 +14x + 49

Ejemplo 5

Aplique el producto notable para expandir la expresión (2x-8)^2. Notemos que uno de los sumandos involucrados es una incógnita multiplicada por dos, por lo tanto no se puede restar con ocho.

(2x-8)^2
\ =\ (2x)^2 - 2(2x)(8) + 8^2
\ =\ 4x^2 - 32x + 64

Ejemplo 6

Aplique el producto notable para expandir la expresión (x^2 + x^5)^2. Notemos que uno de los sumandos involucrados es equis al cuadrado y el otro es equis elevado a la cinco, por lo tanto no se pueden sumar.

(x^2 + x^5)^2
\ =\ (x^2)^2 + 2(x^2)(x^5) + (x^5)^2
\ =\ x^4 + 2x^7 + x^{10}


¿Cuál es el resultado de 8÷2(2+2)?

En el 2019 se viralizó un debate sobre cual es el resultado de la operación 8÷2(2+2), pensé que había quedado en el olvido y que ya se había aclarado la situación. Sin embargo, me preguntaron cual era el resultado de esta operación citándome en un tweet y, aún hoy, las personas que respondían no se decidían entre 1 y 16.

Es necesario entender que al considerar operaciones mixtas, hay una jerarquía establecida entre las operaciones. Primero se deben efectuar todos los productos, después todas las divisiones, después todas las sumas y por último todas las restas. También hay que considerar que si se presentan signos de agrupación hay que efectuar primero lo contenido entre paréntesis (), luego corchetes [] y luego llaves {}; hay que efectuar las operaciones que se encuentran dentro de ellos considerando la jerarquía original.

Anuncios

¿Las calculadoras mienten?

8÷2(2+2)
Calculadora Android.
8÷2(2+2)
Calculadora “CASIIO” comprada en los chinos.

Al calcular esta operación en una calculadora, los resultados diferirán dependiendo de como han sido programadas pues algunas han sido programadas para priorizar la jerarquía entre las operaciones y otras han sido programadas para priorizar el orden de aparición de las operaciones.

Anuncios

Escribir bien…

En mi opinión, el problema con ese caso específico es que la persona que lo planteó originalmente no tiene la más mínima de cómo se usan los signos de agrupación pues cuando se plantean operaciones entre números, éstas siempre provienen de un caso real, así que ese tipo de problemas siempre estarán bien planteados si se escriben correctamente. La ambigüedad en las matemáticas no debe tener cabida.

Esa operación tal como está definida es como plantear una pregunta sin signos de interrogación, comas, puntos o acentos .

Anuncios

¿Cómo plantear el problema?

Caso 1

Supongamos que usted trabaja para una agencia de festejos y en una fiesta le ha correspondido repartir ocho trozos de torta entre un par de niños, esta situación se describe con la operación 8÷2. Suponga además que usted debe hacer esto dos veces más, entonces esta situación la describe con la siguiente operación (8÷2)×2. Si nuevamente le indican qué debe hacer esto dos veces más, entonces al final usted describirá esto con la siguiente operación

(8÷2)×(2+2)
= 4×4
= 16

Esto quiere decir que al final deberá repartir 16 trozos de torta.

Caso 2

Suponga nuevamente que usted trabaja en una agencia de festejos y en una fiesta le ha correspondido repartir ocho trozos de torta entre un par de niños, esta situación se describe con la operación 8÷2. Sin embargo, le indican que ahora no es un par de niños si no que son dos pares de niños, esta situación se describe con la operación 8÷(2×2). Por último, le indican que han llegado dos pares de niños más, entonces al final usted describirá esto con la siguiente operación

8÷[2×(2+2)]
= 8÷[2×4]
= 8÷8
= 1

Esto quiere decir que al final deberá repartir un pedazo de torta a cada niño.

En conclusión…

Considerando estos dos casos, notamos que cada uno tiene su propio planteamiento e interpretación. Siempre especificando cuales operaciones se han agrupado y siempre especificando qué operaciones se deben efectuar primero. Sin embargo, el problema original se resume en el siguiente tweet: