Operaciones entre matrices

Sobre el conjunto de las matrices podemos definir operaciones de suma, resta, multiplicación por un escalar y multiplicación entre dos matrices. Además, definiremos una operación que se aplica sobre una sola matriz que llamaremos transposición.

Anuncios

Suma de Matrices

Sean A y B dos matrices de tamaño m \times n, definimos la suma A+B como una nueva matriz donde cada elemento ij de esta nueva matriz, está definido como la suma del elemento ij de la matriz A más el elemento ij de la matriz B. Formalmente,

[A+B]_{ij} = [A]_{ij} + [B]_{ij}

O escrito de forma exhaustiva, tenemos que

Veamos algunos ejemplos.

Ejemplos

Ejemplo 1

Considerando las matrices A y B, de tamaño 2 \times 2, calcule la suma indicada.

Ejemplo 2

Considerando las matrices A y B, de tamaño 4 \times 3, calcule la suma indicada.

Ejemplo 3

Considerando las matrices A y B, de tamaño, 1 \times 2 calcule la suma indicada.

Ejemplo 4

Considerando las matrices A y B, de tamaño, 4 \times 2 calcule la suma indicada.


Anuncios

Resta de Matrices

Sean A y B dos matrices de tamaño m \times n, definimos la resta A-B como una nueva matriz donde cada elemento ij de esta nueva matriz, está definido como la resta del elemento ij de la matriz A menos el elemento ij de la matriz B. Formalmente,

[A+B]_{ij} = [A]_{ij} - [B]_{ij}

O escrito de forma exhaustiva, tenemos que

Debemos tomar en cuenta que al restar la matriz B, cada uno de los elementos de esta matriz es multiplicado por -1. Veamos algunos ejemplos.

Ejemplos

Ejemplo 5

Considerando las matrices A y B, de tamaño, 2 \times2 calcule la suma indicada.

Ejemplo 6

Considerando las matrices A y B, de tamaño, 4 \times 2 calcule la suma indicada.

Ejemplo 7

Considerando las matrices A y B, de tamaño, 1 \times 4 calcule la suma indicada.

Ejemplo 8

Considerando las matrices A y B, de tamaño, 3 \times 1 calcule la suma indicada.


Anuncios

Multiplicación por un escalar

Diremos que un escalar es un número real que al multiplicarla por una matriz esta nos cambia la escala de cada uno de los elementos de ella. Definimos el producto de un escalar k por una matriz A, como una nueva matriz donde cada elemento ij de esta nueva matriz, está definido como el producto del escalar k por el elemento ij de la matriz A. Formalmente,

[k \cdot A]_{ij} = k \cdot [A]

O escrito de forma exhaustiva, tenemos que

Veamos algunos ejemplos.

Ejemplos

Ejemplo 9

Considerando la matriz A, de tamaño, 2 \times 2 calcule el producto por el escalar 4.

Ejemplo 10

Considerando la matriz A, de tamaño, 3 \times 1 calcule el producto por el escalar -4.

Ejemplo 11

Considerando la matriz A, de tamaño, 4 \times 2 calcule el producto por el escalar 7.

Ejemplo 12

Considerando la matriz A, de tamaño, 3 \times 3 calcule el producto por el escalar 9.


Anuncios

Producto entre Matrices

Sean A una matriz de tamaño m \times n y B una matriz de tamaño n \times p, definimos el producto A \times B como una nueva matriz donde cada elemento ij de esta nueva matriz, está definido el “producto” de la fila i de la matriz A por la columna j de la matriz B. Formalmente,

[A \times B]_{ij} = \sum_k^n [A]_{ij} \cdot [B]_{ij}

Debemos notar que para poder efectuar esta operación, el número de columnas de la matriz A debe ser exactamente igual al número de filas de la matriz B y aunque esta operación pareciera complicada, en los siguientes ejemplos veremos el procedimiento para calcular el producto entre dos matrices.

Ejemplos

Ejemplo 13

Considerando la matriz A, de tamaño, 2 \times 2 y la matriz B, de tamaño, 2 \times 2. Calcule el producto $A \times B$. Veamos en este ejemplo paso a paso como calcular este producto.

El elemento [A \times B]_{11} de la nueva matriz A \times B es el resultado de multiplicar la fila 1 por la columna 1.

El elemento [A \times B]_{12} de la nueva matriz A \times B es el resultado de multiplicar la fila 1 por la columna 2.

El elemento [A \times B]_{21} de la nueva matriz A \times B es el resultado de multiplicar la fila 2 por la columna 1.

El elemento [A \times B]_{22} de la nueva matriz A \times B es el resultado de multiplicar la fila 2 por la columna 2.

De esta forma, tenemos que

Entonces, aplicamos las operaciones involucradas

Ejemplo 14

Considerando la matriz A, de tamaño, 4 \times 2 y la matriz B, de tamaño, 2 \times 1. Calcule el producto A \times B.

Ejemplo 15

Considerando la matriz A, de tamaño, 1 \times 3 y la matriz B, de tamaño, 3 \times 2. Calcule el producto A \times B.

Ejemplo 16

Considerando la matriz A, de tamaño, 4 \times 3 y la matriz B, de tamaño, 3 \times 4. Calcule el producto A \times B.

Nota: Si podemos multiplicar A \times B, no necesariamente podemos multiplicar B \times A, esto quiere decir que el producto entre matrices no es conmutativo.


Anuncios

Transposición de matrices

En ocasiones, es necesario cambiar las filas por columnas de una matriz y viceversa, para esto definimos la operación de transposición. Sea A una matriz de tamaño m \times n decimos que la transposición de la matriz A es una nueva matriz de tamaño n \times m donde los elementos de la matriz A que están en la posición ij pasan a estar en la posición ji, a esta nueva matriz se le llama A traspuesta (o traspuesta) y la denotamos por A^{T} o A'. Formalmente,

[A^{T}]_{ij} = A_{ji}

O escrito de forma exhaustiva, tenemos que

Veamos algunos ejemplos.

Ejemplos

Ejemplos 17

Considerando la matriz A, de tamaño, 3 \times 3. Calcule la matriz transpuesta de A, es decir, A^{T}.

Ejemplos 18

Considerando la matriz A, de tamaño, 4 \times 1. Calcule la matriz transpuesta de A, es decir, A^{T}.

Ejemplo 19

Considerando la matriz A, de tamaño, 4 \times 2. Calcule la matriz transpuesta de A, es decir, A^{T}.

Ejemplo 20

Considerando la matriz A, de tamaño, 3 \times 4. Calcule la matriz transpuesta de A, es decir, A^{T}.


¿Tiendes dudas? ¿Requieres más ejemplos? No dudes en escribir.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios .