Operaciones entre filas y columnas de una matriz

Si bien hemos podido definir operaciones entre matrices, es posible definir operaciones entre y sobre las filas de una matriz y de igual manera, es posible definir operaciones entre y sobre las columnas de una matriz. Veremos además, que al aplicar estas operaciones, podemos deducir el determinante de la nueva matriz a partir de la matriz original.

Operaciones elementales por fila

Veamos a continuación cuales son las operaciones que podemos definir sobre y entre las filas de una matriz.

Intercambio de filas de una matriz

Si i y j son dos filas de una matriz A de tamaño m \times n, tales que i < j, denotamos el intercambio de estas dos filas usando la notación f_i \longleftrightarrow f_j y la expresamos de la siguiente manera:

Intercambio de Filas de una matriz | totumat.com

Veamos algunos ejemplos para ilustrar esta idea con más claridad.

Anuncios

Ejemplos

Ejemplo 1

Consideremos una matriz de tamaño 2 \times 2 e intercambiemos la fila 1 por la fila 2, entonces,

Intercambio de Filas de una matriz | totumat.com

Ejemplo 2

Consideremos una matriz de tamaño 3 \times 3 e intercambiemos la fila 1 por la fila 3, entonces,

Intercambio de Filas de una matriz | totumat.com

Ejemplo 3

Consideremos una matriz de tamaño 4 \times 4 e intercambiemos la fila 3 por la fila 2, entonces,

Intercambio de Filas de una matriz | totumat.com

Ejemplo 4

Consideremos una matriz de tamaño 6 \times 3 e intercambiemos la fila 1 por la fila 3, entonces,

Intercambio de Filas de una matriz | totumat.com

Suma de filas de una matriz

Si i y j son dos filas de una matriz A de tamaño m \times n, tales que i < j. Podemos considerar la fila i y sumarle la fila j, es decir, sumar los términos correspondientes, para esto usamos la notación f_i \longrightarrow f_i + f_j y la expresamos de la siguiente manera:

Suma de Filas de una matriz | totumat.com

Veamos algunos ejemplos para ilustrar esta idea con más claridad.

Anuncios

Ejemplos

Ejemplo 5

Consideremos una matriz de tamaño 2 \times 2 y a la fila 1 le sumamos la fila 2, entonces,

Suma de Filas de una matriz | totumat.com

Ejemplo 6

Consideremos una matriz de tamaño 3 \times 3 y a la fila 1 le sumamos la fila 3, entonces,

Suma de Filas de una matriz | totumat.com

Ejemplo 7

Consideremos una matriz de tamaño 4 \times 4 y a la fila 3 le sumamos la fila 2, entonces,

Suma de Filas de una matriz | totumat.com

Ejemplo 8

Consideremos una matriz de tamaño 6 \times 3 y a la fila 5 le sumamos la fila 1, entonces,

Suma de Filas de una matriz | totumat.com

Multiplicar una fila de una matriz por un escalar

Si i es una fila de una matriz A de tamaño m \times n. Podemos considerar la fila i y multiplicarla por un escalar k, para esto usamos la notación f_i \longrightarrow k \cdot f_i y la expresamos de la siguiente manera:

Multiplicar una fila de una matriz por un escalar | totumat.com

Veamos algunos ejemplos para ilustrar esta idea con más claridad.

Anuncios

Ejemplos

Ejemplo 9

Consideremos una matriz de tamaño 2 \times 2 y multipliquemos la fila 1 por el escalar 5, entonces,

Multiplicar una fila de una matriz por un escalar | totumat.com

Ejemplo 10

Consideremos una matriz de tamaño 3 \times 3 y multipliquemos la fila 3 por el escalar -1, entonces,

Multiplicar una fila de una matriz por un escalar | totumat.com

Ejemplo 11

Consideremos una matriz de tamaño 4 \times 4 y multipliquemos la fila 2 por el escalar 10, entonces,

Multiplicar una fila de una matriz por un escalar | totumat.com

Ejemplo 12

Consideremos una matriz de tamaño 6 \times 3 y multipliquemos la fila 5 por el escalar -4, entonces,

Multiplicar una fila de una matriz por un escalar | totumat.com

Sumar una fila de una matriz multiplicada por un escalar

Finalmente, veremos una operación elemental que de cierta forma mezcla efectúa varias operaciones al mismo tiempo. Si i y j son dos filas de una matriz A de tamaño m \times n, tales que i < j. Podemos considerar la fila i y sumarle la fila j multiplicada por un escalar k, para esto usamos la notación f_i \longrightarrow f_i + k \cdot f_j y la expresamos de la siguiente manera:

Sumar una fila de una matriz multiplicada por un escalar | totumat.com

Veamos algunos ejemplos para ilustrar esta idea con más claridad.

Anuncios

Ejemplos

Ejemplo 13

Consideremos una matriz de tamaño 2 \times 2 y a la fila 1 le sumamos la fila 2 multiplicada por 5, entonces,

Sumar una fila de una matriz multiplicada por un escalar | totumat.com

Ejemplo 14

Consideremos una matriz de tamaño 3 \times 3 y a la fila 1 le sumamos la fila 3 multiplicada por 2, entonces,

Sumar una fila de una matriz multiplicada por un escalar | totumat.com

Ejemplo 15

Consideremos una matriz de tamaño 4 \times 4 y a la fila 3 le sumamos la fila 2 multiplicada por -1, entonces,

Sumar una fila de una matriz multiplicada por un escalar | totumat.com

Notemos que en este caso estamos definiendo la resta de filas de una matriz.

Ejemplo 16

Consideremos una matriz de tamaño 6 \times 3 y a la fila 5 le sumamos la fila 1 multiplicada por 10, entonces,

Sumar una fila de una matriz multiplicada por un escalar | totumat.com

Matrices equivalentes por filas

Una vez que se ha hecho una operación elemental por fila a una matriz, se pueden seguir haciendo operaciones elementales por fila a las matrices resultantes de forma sucesiva. Diremos que si una matriz B se obtiene a partir de una matriz A a través de una sucesión finita de operaciones elementales por filas, entonces diremos que las matrices A y B son matrices equivalentes por filas y esta relación la denotaremos por

A \stackrel{f}{\sim} B

Veamos algunos ejemplos para ilustrar esta idea con más claridad.

Anuncios

Ejemplo

Consideremos una matriz de tamaño 2 \times 2, haciendo operaciones elementales por fila de forma sucesiva, veamos que esta es equivalente a la matriz identidad \mathbf{I}.

Método de Reducción Gaussiana | totumat.com

Operaciones elementales por columna

Veamos a continuación cuales son las operaciones que podemos definir sobre y entre las filas de una matriz.

Intercambio de columnas de una matriz

Si i y j son dos columnas de una matriz A de tamaño m \times n, tales que i < j, denotamos el intercambio de estas dos columnas usando la notación c_i \longleftrightarrow c_j y la expresamos de la siguiente manera:

Intercambio de columnas de una matriz | totumat.com

Veamos algunos ejemplos para ilustrar esta idea con más claridad.

Anuncios

Ejemplos

Ejemplo 17

Consideremos una matriz de tamaño 2 \times 2 e intercambiemos la columna 1 por la columna 2, entonces,

Intercambio de columnas de una matriz | totumat.com

Ejemplo 18

Consideremos una matriz de tamaño 3 \times 3 e intercambiemos la columna 1 por la columna 3, entonces,

Intercambio de columnas de una matriz | totumat.com

Ejemplo 19

Consideremos una matriz de tamaño 4 \times 4 e intercambiemos la columna 3 por la columna 2, entonces,

Intercambio de columnas de una matriz | totumat.com

Ejemplo 20

Consideremos una matriz de tamaño 6 \times 3 e intercambiemos la columna 1 por la columna 2, entonces,

Intercambio de columnas de una matriz | totumat.com

Suma de columnas de una matriz

Si i y j son dos columnas de una matriz A de tamaño m \times n, tales que i < j. Podemos considerar la columna i y sumarle la columna j, es decir, sumar los términos correspondientes, para esto usamos la notación c_i \longrightarrow c_i + c_j y la expresamos de la siguiente manera:

Suma de columnas de una matriz | totumat.com

Veamos algunos ejemplos para ilustrar esta idea con más claridad.

Anuncios

Ejemplos

Ejemplo 21

Consideremos una matriz de tamaño 2 \times 2 y a la columna 1 le sumamos la columna 2, entonces,

Suma de columnas de una matriz | totumat.com

Ejemplo 22

Consideremos una matriz de tamaño 3 \times 3 y a la columna 1 le sumamos la columna 3, entonces,

Suma de columnas de una matriz | totumat.com

Ejemplo 23

Consideremos una matriz de tamaño 4 \times 4 y a la columna 3 le sumamos la columna 2, entonces,

Suma de columnas de una matriz | totumat.com

Ejemplo 24

Consideremos una matriz de tamaño 6 \times 3 y a la columna 2 le sumamos la columna 1, entonces,

Suma de columnas de una matriz | totumat.com

Multiplicar una columna de una matriz por un escalar

Si i es una columna de una matriz A de tamaño m \times n. Podemos considerar la columna i y multiplicarla por un escalar k, para esto usamos la notación c_i \longrightarrow k \cdot c_i y la expresamos de la siguiente manera:

Multiplicar una columna de una matriz por un escalar | totumat.com

Veamos algunos ejemplos para ilustrar esta idea con más claridad.

Anuncios

Ejemplos

Ejemplo 25

Consideremos una matriz de tamaño 2 \times 2 y multipliquemos la columna 1 por el escalar 5, entonces,

Multiplicar una columna de una matriz por un escalar | totumat.com

Ejemplo 26

Consideremos una matriz de tamaño 3 \times 3 y multipliquemos la columna 3 por el escalar -1, entonces,

Multiplicar una columna de una matriz por un escalar | totumat.com

Ejemplo 27

Consideremos una matriz de tamaño 4 \times 4 y multipliquemos la columna 2 por el escalar 10, entonces,

Multiplicar una columna de una matriz por un escalar | totumat.com

Ejemplo 28

Consideremos una matriz de tamaño 6 \times 3 y multipliquemos la columna 1 por el escalar -4, entonces,

Multiplicar una columna de una matriz por un escalar | totumat.com

Sumar una columna de una matriz multiplicada por un escalar

Finalmente, veremos una operación elemental que de cierta forma mezcla efectúa varias operaciones al mismo tiempo. Si i y j son dos columnas de una matriz A de tamaño m \times n, tales que i < j. Podemos considerar la columna i y sumarle la columna j multiplicada por un escalar k, para esto usamos la notación c_i \longrightarrow c_i + k \cdot c_j y la expresamos de la siguiente manera:

Sumar una columna de una matriz multiplicada por un escalar | totumat.com

Veamos algunos ejemplos para ilustrar esta idea con más claridad.

Anuncios

Ejemplos

Ejemplo 29

Consideremos una matriz de tamaño 2 \times 2 y a la columna 1 le sumamos la columna 2 multiplicada por 5, entonces,

Sumar una columna de una matriz multiplicada por un escalar | totumat.com

Ejemplo 30

Consideremos una matriz de tamaño 3 \times 3 y a la columna 1 le sumamos la columna 3 multiplicada por 2, entonces,

Sumar una columna de una matriz multiplicada por un escalar | totumat.com

Ejemplo 31

Consideremos una matriz de tamaño 4 \times 4 y a la columna 3 le sumamos la columna 2 multiplicada por -1, entonces,

Sumar una columna de una matriz multiplicada por un escalar | totumat.com

Notemos que en este caso estamos definiendo la resta de columnas.

Ejemplo 32

Consideremos una matriz de tamaño 6 \times 3 y a la columna 2 le sumamos la columna 1 multiplicada por 10, entonces,

Sumar una columna de una matriz multiplicada por un escalar | totumat.com

2 comentarios en “Operaciones entre filas y columnas de una matriz

¿Tiendes dudas? ¿Requieres más ejemplos? No dudes en escribir.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios .