Cálculo de Matriz Inversa – Gauss-Jordan

A continuación veremos un método que nos permite calcular la inversa de una matriz usando las operaciones elementales por filas para reducir la matriz a una matriz escalonada reducida, pero a su vez, con las mismas operaciones transformar la matriz identidad en la inversa que estamos buscando.

Formalmente, si A es una matriz cuadrada no-singular, es decir, tal que su determinante es distinto de cero. Podemos usar el Método de Eliminación de Gauss-Jordan (ó Método de Eliminación Gaussiana) para calcular su inversa ampliando la matriz A adosando la matriz identidad a su lado derecho, de la siguiente forma:

Cálculo de Matriz Inversa Gauss-Jordan | totumat.com

Veamos algunos ejemplos para entender como se calcula la matriz inversa desarrollando este procedimiento.

Ejemplos

Ejemplo 1

Considerando la matriz de tamaño 2 \times 2. Calcule la matriz inversa usando el Método de Eliminación de Gauss-Jordan.

Empezamos calculando el determinante de la matriz A para verificar que éste sea diferente de cero,

Cálculo de Matriz Inversa Gauss-Jordan | totumat.com

Habiendo verificado que el determinante de la matriz A es distinto de cero, ampliamos la matriz adosando la matriz identidad de lado derecho y aplicamos el Método de Eliminación de Gauss-Jordan sobre la matriz A.

Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com

Finalmente, la matriz inversa de A está definida de la siguiente forma,

Cálculo de Matriz Inversa Gauss-Jordan | totumat.com

Ejemplo 2

Considerando la matriz de tamaño 2 \times 2. Calcule la matriz inversa usando el Método de Eliminación de Gauss-Jordan.

Empezamos calculando el determinante de la matriz A para verificar que éste sea diferente de cero,

Cálculo de Matriz Inversa Gauss-Jordan | totumat.com

Habiendo verificado que el determinante de la matriz A es distinto de cero, ampliamos la matriz adosando la matriz identidad de lado derecho y aplicamos el Método de Eliminación de Gauss-Jordan sobre la matriz A.

Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com

Finalmente, la matriz inversa de A está definida de la siguiente forma,

Cálculo de Matriz Inversa Gauss-Jordan | totumat.com

Ejemplo 3

Considerando la matriz de tamaño 3 \times 3. Calcule la matriz inversa usando el Método de Eliminación de Gauss-Jordan.

Empezamos calculando el determinante de la matriz A para verificar que éste sea diferente de cero,

Cálculo de Matriz Inversa Gauss-Jordan | totumat.com

Habiendo verificado que el determinante de la matriz A es distinto de cero, ampliamos la matriz adosando la matriz identidad de lado derecho y aplicamos el Método de Eliminación de Gauss-Jordan sobre la matriz A.

Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com

Finalmente, la matriz inversa de A está definida de la siguiente forma,

Cálculo de Matriz Inversa Gauss-Jordan | totumat.com

Ejemplo 4

Considerando la matriz de tamaño 3 \times 3. Calcule la matriz inversa usando el Método de Eliminación de Gauss-Jordan.

Empezamos calculando el determinante de la matriz A para verificar que éste sea diferente de cero,

Cálculo de Matriz Inversa Gauss-Jordan | totumat.com

Habiendo verificado que el determinante de la matriz A es distinto de cero, ampliamos la matriz adosando la matriz identidad de lado derecho y aplicamos el Método de Eliminación de Gauss-Jordan sobre la matriz A.

Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com
Cálculo de Matriz Inversa Gauss-Jordan | totumat.com

Finalmente, la matriz inversa de A está definida de la siguiente forma,

Cálculo de Matriz Inversa Gauss-Jordan | totumat.com

¿Tiendes dudas? ¿Requieres más ejemplos? No dudes en escribir.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios .