Ejercicios Propuestos – Operaciones básicas entre números reales

Calcule el resultado de las siguientes expresiones matemáticas tomando en cuenta la jerarquía de las operaciones básicas y los signos de agrupación.

  1. 90 + 58 \cdot 13
  2. -54 + 3 \cdot 48
  3. 8 - 10 \cdot 12
  4. -25 - 78 \cdot 34

  1. ( 11 + 52) \cdot 13
  2. ( -72 + 19) \cdot 88
  3. ( 56 - 65) \cdot 39
  4. ( -51 - 33) \cdot 4

  1. 78 + ( 50 + 54) \cdot 72
  2. 5 + ( 73 - 84) \cdot 37
  3. 95 - ( 64 + 53) \cdot 39
  4. 87 - ( 64 - 27) \cdot 30

  1. 4^2 + ( 2 + 7) \cdot 4
  2. 2^3 + ( 6 - 3) \cdot 7
  3. 5^2 - ( 9 + 2) \cdot 4
  4. 4^3 - ( 9 - 10) \cdot 9

  1. 53 + [ 9^3 + ( 4 + 8) \cdot 2 ]
  2. 62 - [ 4^2 + ( 9 + 6) \cdot 6 ]
  3. 95 + [ 3^2 - ( 1 + 7) \cdot 6 ]
  4. 86 - [ 2^2 + ( 2 - 9) \cdot 9 ]

  1. 7 \cdot [ 4^3 + ( 7 + 1) \cdot 2 ] + 17
  2. 8 \cdot [ 2^2 - ( 1 + 3) \cdot 5 ] - 25
  3. 2 \cdot [ 4^2 - ( 3 - 8) \cdot 3 ] + 93
  4. 8 \cdot [ 4^2 - ( 1 - 2) \cdot 7 ] - 15

  1. (7^2 + 56 ) \cdot {6 + [ 6^2 + ( 5 + 6) \cdot 7 ] + 24}
  2. (2^2 - 69 ) \cdot {2 + [ 3^2 + ( 7 + 6) \cdot 7 ] - 71}
  3. (8^2 + 55 ) \cdot {8 - [ 10^2 + ( 9 - 9) \cdot 5 ] + 58}
  4. (2^2 - 99 ) \cdot {10 + [ 10^2 - ( 2 - 3) \cdot 1 ] + 81}

  1. \dfrac{ 68 + 96 \cdot 61 }{ 49 + 13 \cdot 78 }
  2. \dfrac{ 98 + 10 \cdot 28 }{ 11 - 82 \cdot 73 }
  3. \dfrac{ 53 - 93 \cdot 64 }{ 93 + 88 \cdot 92 }
  4. \dfrac{ 71 - 7 \cdot 77 }{ 43 - 62 \cdot 79 }

  1. 73 + 84 \cdot \dfrac{ 42 }{ 78 + 29 \cdot 69 }
  2. 8 + 85 \cdot \dfrac{ 1 }{ 11 - 39 \cdot 59 }
  3. 70 - 44 \cdot \dfrac{ 2 }{ 19 + 96 \cdot 38 }
  4. 35 - 86 \cdot \dfrac{ 62 }{ 68 - 40 \cdot 64 }

  1. \dfrac{ 32 + [ 8^2 + ( 10 + 1) \cdot 6 ] }{ 19 + [ 4^3 + ( 4 + 4) \cdot 5 ] }
  2. \dfrac{ 62 - [ 8^3 + ( 5 + 9) \cdot 2 ] }{ 54 - [ 10^3 - ( 2 + 4) \cdot 7 ] }
  3. \dfrac{ 76 - [ 5^2 - ( 4 + 7) \cdot 10 ] }{ 11 + [ 7^2 + ( 7 - 9) \cdot 2 ] }
  4. \dfrac{ 44 - [ 10^2 - ( 1 - 4) \cdot 8 ] }{ 49 - [ 5^3 - ( 1 - 1) \cdot 7 ] }

  1. 81 + 8^2 + \dfrac{ ( 1 - 8) \cdot 8 ] }{ 6 - [ 8^2 - ( 6 + 4) \cdot 8 ] }
  2. 89 + 7^3 + \dfrac{ ( 4 - 3) \cdot 8 ] }{ 88 - [ 8^3 - ( 7 + 3) \cdot 1 ] }
  3. 54 + 10^3 + \dfrac{ ( 3 - 4) \cdot 5 ] }{ 93 - [ 4^3 - ( 4 + 9) \cdot 9 ] }
  4. 52 + 4^3 + \dfrac{ ( 3 - 7) \cdot 10 ] }{ 70 - [ 5^2 - ( 7 + 8) \cdot 9 ] }

  1. \dfrac{ (4^3 - 68 ) \cdot {7 + [ 5^3 - ( 1 - 9) \cdot 6 ] + 52} }{ (2^3 - 91 ) \cdot {4 + [ 3^3 - ( 5 - 5) \cdot 10 ] + 19} }
  2. \dfrac{ (10^2 - 37 ) \cdot {10 + [ 9^2 - ( 10 - 4) \cdot 5 ] + 89} }{ (4^2 - 37 ) \cdot {10 + [ 9^3 - ( 4 - 10) \cdot 8 ] + 49} }
  3. \dfrac{ (7^3 - 38 ) \cdot {1 + [ 6^3 - ( 3 - 6) \cdot 6 ] + 93} }{ (9^3 - 61 ) \cdot {1 + [ 6^2 - ( 4 - 8) \cdot 2 ] + 17} }
  4. \dfrac{ (2^2 - 39 ) \cdot {1 + [ 3^2 - ( 3 - 1) \cdot 4 ] + 38} }{ (4^3 - 44 ) \cdot {10 + [ 6^3 - ( 10 - 2) \cdot 10 ] + 79} }

  1. (5^3 + 98 ) + \dfrac{ 3\cdot{5 + [ 9^2 + ( 2 + 10) \cdot 9 ] + 20} }{ (9^3 + 48 ) \cdot {2 + [ 6^3 + ( 1 + 4) \cdot 10 ] + 95} }
  2. (3^2 + 42 ) - \dfrac{ 7\cdot{3 + [ 2^3 + ( 1 + 7) \cdot 3 ] + 90} }{ (8^3 + 32 ) \cdot {8 + [ 3^2 + ( 1 + 10) \cdot 9 ] + 82} }
  3. -(2^2 + 5 ) + \dfrac{ 4\cdot{8 + [ 4^3 + ( 6 + 10) \cdot 7 ] + 21} }{ (8^2 + 81 ) \cdot {7 + [ 2^3 + ( 4 + 3) \cdot 2 ] + 26} }
  4. -(6^3 + 63 ) - \dfrac{ 6\cdot{5 + [ 8^2 + ( 5 + 2) \cdot 6 ] + 37} }{ (10^2 + 5 ) \cdot {1 + [ 6^2 + ( 3 + 1) \cdot 7 ] + 51} }

Operaciones entre polinomios

Podemos definir las operaciones de suma, resta, multiplicación y división entre polinomios como una generalización de las operaciones que hemos definido entre los números reales.

También pudiera interesarte

Anuncios

Suma de polinomios

Para sumar o restar polinomios, recurrimos a la propiedad asociativa de los números reales, pues agrupamos los sumandos que tengan la misma potencia de x como factor, de forma que si consideramos dos polinomios P(x) = a_m x^m + \ldots + a_1 x + a_0 y Q(x) = b_n x^n + \ldots + b_1 x + b_0, donde el grado de P(x) es mayor que el grado de Q(x), es decir, m \geq n; definimos la suma P(x)+Q(x) de la siguiente forma:

Suma de Polinomios | totumat.com

De igual forma, definimos la resta P(x)-Q(x) de la siguiente forma:

Suma de Polinomios | totumat.com

Notando que si el grado de P(x) es estrictamente mayor que el grado de Q(x), entonces completamos el polinomio Q(x) con coeficientes ceros, es decir, b_i = 0 para todo i > n.

Veamos con algunos ejemplos como efectuar la suma de polinomios.

Anuncios

Ejemplos

Ejemplo 1

Considerando los polinomios P(x) = 3x^2 - 5x + 2 y Q(x) = 7x + 1, calcule la suma P(x) + Q(x).

Suma de Polinomios | totumat.com

Por lo tanto, P(x) + Q(x) = 3 x^2 + 2x + 3.

Ejemplo 2

Considerando los polinomios P(x) = 4x^6 + x^4 - 2x^2 + 9x + 12 y Q(x) = 3x^6 - 8x^5 + 4x^4 + x - 3, calcule la suma P(x) + Q(x).

Suma de Polinomios | totumat.com

Por lo tanto, P(x) + Q(x) = 7x^6 + 8x^5 - 5x^4 - 2x^2 + 10x + 15.

Ejemplo 3

Considerando los polinomios P(x) = 6x^3 + 7x^2 - 4 y Q(x) = 2x + 3, calcule la resta P(x) - Q(x).

Suma de Polinomios | totumat.com

Por lo tanto, P(x) - Q(x) = 6x^3 + 7x^2 - 2x - 7.

Ejemplo 4

Considerando los polinomios P(x) = -12x^6 + 3x^5 + 3x^4 - x^2 + 8x + 5 y Q(x) = x^6 + 5x^5 + 2x^4 - 4x^3 - 10x^2 - x, calcule la resta P(x) - Q(x).

Suma de Polinomios | totumat.com

Por lo tanto, P(x) - Q(x) = 11x^6 - 2x^5 + x^4 + 4x^3 + 9x^2 + 9x + 5.


Anuncios

Producto de polinomios

Para multiplicar polinomios, recurrimos a la propiedad distributiva de los números reales, de forma que si consideramos dos polinomios P(x) = a_m x^m + \ldots + a_1 x + a_0 y Q(x) = b_n x^n + \ldots + b_1 x + b_0, podemos definir el producto de estos dos polinomios distribuyendo los productos de la siguiente forma

Producto o Multiplicación de Polinomios | totumat.com

Una vez que se ha expandido este producto, lo podemos expresar como una sumatoria de la siguiente manera:

\sum_{i=1}^n \sum_{j=1}^m a_i b_j x^{i+j}

Este procedimiento pudiera resultar extenso y la notación del caso general pareciera engorrosa, sin embargo, efectuar el producto de polinomios no es más que la aplicación de la propiedad distributiva para los números reales y la posterior aplicación de las propiedades de las potencias para sumar los exponentes.

Veamos en los siguientes ejemplos como calcular algunos productos entre polinomios.

Anuncios

Ejemplos

Ejemplo 5

Considerando los polinomios P(x) = 4 x + 3 y Q(x) = - 10 x - 4. Calcule el producto P(x) \cdot Q(X), es decir,

\left( 4 x + 3 \right) \cdot \left( - 10 x - 4 \right)

Aplicamos la propiedad distributiva y escribimos los productos resultantes en orden para facilitar la suma de los sumandos correspondientes

Producto o Multiplicación de Polinomios | totumat.com

Por lo tanto el producto de los polinomios P(x) y Q(x) es igual a

- 40 x^{2} - 46 x - 12

Ejemplo 6

Considerando los polinomios P(x) = 6 x^{2} - 8 x + 2 y Q(x) = x^{2} + 5 x + 6. Calcule el producto P(x) \cdot Q(X), es decir,

\left( 6 x^{2} - 8 x + 2 \right) \cdot \left( x^{2} + 5 x + 6 \right)

Aplicamos la propiedad distributiva y escribimos los productos resultantes en orden para facilitar la suma de los sumandos correspondientes

Producto o Multiplicación de Polinomios | totumat.com

Por lo tanto el producto de los polinomios P(x) y Q(x) es igual a

6 x^{4} + 22 x^{3} - 2 x^{2} - 38 x + 12

Ejemplo 7

Considerando los polinomios P(x) = 3 x^{2} - 6 x + 6 y Q(x) = - 9 x^{3} - 5 x^{2} + 4 x + 7. Calcule el producto P(x) \cdot Q(X), es decir,

\left( 3 x^{2} - 6 x + 6 \right) \cdot \left( - 9 x^{3} - 5 x^{2} + 4 x + 7 \right)

Aplicamos la propiedad distributiva y escribimos los productos resultantes en orden para facilitar la suma de los sumandos correspondientes

Producto o Multiplicación de Polinomios | totumat.com

Por lo tanto el producto de los polinomios P(x) y Q(x) es igual a

- 27 x^{5} + 39 x^{4} - 12 x^{3} - 33 x^{2} - 18 x + 42

Ejemplo 9

Considerando los polinomios P(x) = - 4 x^{3} + x^{2} - 2 x + 2 y Q(x) = 9 x^{2} - x + 4. Calcule el producto P(x) \cdot Q(X), es decir,

\left( - 4 x^{3} + x^{2} - 2 x + 2 \right) \cdot \left( 9 x^{2} - x + 4 \right)

Aplicamos la propiedad distributiva y escribimos los productos resultantes en orden para facilitar la suma de los sumandos correspondientes

Producto o Multiplicación de Polinomios | totumat.com

Por lo tanto el producto de los polinomios P(x) y Q(x) es igual a

- 36 x^{5} + 13 x^{4} - 35 x^{3} + 24 x^{2} - 10 x + 8


Anuncios

División de polinomios

Para definir la división entre polinomios, debemos hacer algunas observaciones sobre división entre números reales pues considerando p y q dos números enteros, al dividir p entre q, buscamos un número tal que al multiplicarlo por q el resultado sea exactamente p, es decir, un número entero c tal que

p = c \cdot q

En este caso, decimos que la división es exacta. Sin embargo, si no podemos encontrar este número, buscamos un número tal que al multiplicarlo por q, el resultado sea mayor de los enteros menores que p, es decir, un número entero c tal que

p = c \cdot q + r

Donde 0 < r < a. Esta propiedad se conoce como el algoritmo de la división. Al número r lo llamaremos el resto de la división y se puede calcular como r = p - c \cdot q. Además notemos que si la división es exacta, entonces el resto de la división es igual a cero, es decir, r=0. Veamos en los siguientes ejemplos como expresar algunas divisiones usando el algoritmo de la división.

Anuncios

Ejemplos

Ejemplo 9

Si dividimos 8 entre 4, entonces buscamos un número entero tal que al multiplicarlo por 4 el resultado sea o que está cerca de 8, particularmente el número que estamos buscando es 2 pues 2 \cdot 4 = 8 y de acuerdo con el algoritmo de la división, el resto es igual a 8 - 8 = 0, esto lo expresamos de la siguiente forma:

División de Números Enteros | totumat.com

Por lo tanto decimos que 8 = 2 \cdot 4 + 0. En este caso el resto es igual a cero, por lo tanto, decimos que la división es exacta.

Ejemplo 10

Si dividimos 13 entre 5, entonces buscamos un número entero tal que al multiplicarlo por 5 el resultado sea o que está cerca de 13, particularmente el número que estamos buscando es 2 pues 2 \cdot 5 = 10 y de acuerdo con el algoritmo de la división, el resto es igual a 13 - 10 = 3, esto lo expresamos de la siguiente forma:

División de Números Enteros | totumat.com

Por lo tanto decimos que 13 = 2 \cdot 5 + 3. En este caso el resto es distinto de cero, por lo tanto, decimos que la división no es exacta.

Ejemplo 11

Si dividimos 21 entre 4, entonces buscamos un número entero tal que al multiplicarlo por 4 el resultado sea o que está cerca de 21, particularmente el número que estamos buscando es 5 pues 5 \cdot 4 = 20 y de acuerdo con el algoritmo de la división, el resto es igual a 21 - 20 = 1, esto lo expresamos de la siguiente forma:

División de Números Enteros | totumat.com

Por lo tanto decimos que 21 = 5 \cdot 4 + 1. En este caso el resto es distinto de cero, por lo tanto, decimos que la división no es exacta.

Ejemplo 12

Si dividimos 21 entre 7, entonces buscamos un número entero tal que al multiplicarlo por 7 el resultado sea o que está cerca de 21, particularmente el número que estamos buscando es 3 pues 3 \cdot 7 = 21 y de acuerdo con el algoritmo de la división, el resto es igual a 21 - 21 = 1, esto lo expresamos de la siguiente forma:

División de Números Enteros | totumat.com

Por lo tanto decimos que 21 = 3 \cdot 7 + 0. En este caso el resto es igual a cero, por lo tanto, decimos que la división es exacta.


Anuncios

El algoritmo de la división se puede generalizar al operar entre polinomios. De modo que si consideramos P(x) y Q(x) dos polinomios tales que el grado de Q(x) es menor o igual que el grado de P(x), al dividir P(x) entre Q(x), buscamos un polinomio tal que al multiplicarlo por Q(x) el resultado sea exactamente P(x), es decir, un polinomio C(x) tal que

P(x) = C(x) \cdot Q(x)

En este caso, decimos que la división es exacta. Sin embargo, si no podemos encontrar este polinomio, buscamos un polinomio tal que al multiplicarlo por Q(x) el polinomio resultante tenga el mismo grado que P(x) y que el grado del polinomio que define el resto sea menor que el grado de Q(x), es decir, un polinomio C(x) tal que

P(x) = C(x) \cdot Q(x) + R(x)

Donde gr\left( R(x) \right) < gr\left( Q(x) \right) \leq gr\left( P(x) \right). Además notemos que si la división es exacta, entonces el resto de la división es igual a cero, es decir, R(x) = 0. Veamos en los siguientes ejemplos el método para dividir polinomios y además, como expresar estas divisiones usando el algoritmo de la división.

Anuncios

Ejemplos

Ejemplo 13

Si dividimos el polinomio P(x) = x^2 + x + 3 entre el polinomio Q(x) = x + 1, entonces los escribimos de la siguiente forma

División de Polinomios | totumat.com

El siguiente paso será buscar un polinomio tal que al multiplicarlo por el primer sumando del polinomio Q(x) = x + 1 el resultado sea exactamente igual al primer sumando del polinomio P(x) = x^2 + x + 3, en este caso el polinomio que estamos buscando es x y lo escribimos de la siguiente forma

División de Polinomios | totumat.com

El siguiente paso será multiplicar el polinomio Q(x) = x + 1 por x y el resultado se lo restamos al polinomio P(x) = x^2 + x + 3 de la siguiente forma

División de Polinomios | totumat.com

Notamos que el grado del polinomio en el resto es menor que el grado del polinomio Q(x), Por lo tanto, concluimos que

x^2 + x + 3 = x \cdot (x+1) + 3

Ejemplo 14

Si dividimos el polinomio P(x) = 8x^3 - 6x^2 - 2 entre el polinomio Q(x) = 2x^2 + x - 1, entonces completamos los polinomios incompletos y los escribimos de la siguiente forma

División de Polinomios | totumat.com

El siguiente paso será buscar un polinomio tal que al multiplicarlo por el primer sumando del polinomio Q(x) = 2x^2 + x - 1 el resultado sea exactamente igual al primer sumando del polinomio P(x) = 8x^3 - 6x^2 - 2, en este caso el polinomio que estamos buscando es 4x y lo escribimos de la siguiente forma

División de Polinomios | totumat.com

El siguiente paso será multiplicar el polinomio Q(x) = 2x^2 + x - 1 por x y el resultado se lo restamos al polinomio P(x) = 8x^3 - 6x^2 - 2 de la siguiente forma

División de Polinomios | totumat.com

Notamos que el grado del polinomio en el resto es menor que el grado del polinomio Q(x), por lo tanto, el siguiente paso será buscar un polinomio tal que al multiplicarlo por el primer sumando del polinomio Q(x) = 2x^2 + x - 1 el resultado sea exactamente igual al primer sumando del polinomio en el resto, de decir, el polinomio -10x^2 + 4x.

En este caso el polinomio que estamos buscando es -5 y lo multiplicamos por el polinomio Q(x) = 2x^2 + x - 1; el resultado se lo restamos al polinomio -10x^2 + 4x de la siguiente forma

División de Polinomios | totumat.com

Notamos que el grado del polinomio en el resto es menor que el grado del polinomio Q(x), Por lo tanto, concluimos que

8x^3 - 6x^2 - 2 = (4x-5) \cdot (2x^2 + x - 1) + 9x-7


Operaciones entre matrices

Sobre el conjunto de las matrices podemos definir operaciones de suma, resta, multiplicación por un escalar y multiplicación entre dos matrices. Además, definiremos una operación que se aplica sobre una sola matriz que llamaremos transposición.

Anuncios

Suma de Matrices

Sean A y B dos matrices de tamaño m \times n, definimos la suma A+B como una nueva matriz donde cada elemento ij de esta nueva matriz, está definido como la suma del elemento ij de la matriz A más el elemento ij de la matriz B. Formalmente,

[A+B]_{ij} = [A]_{ij} + [B]_{ij}

O escrito de forma exhaustiva, tenemos que

Veamos algunos ejemplos.

Ejemplos

Ejemplo 1

Considerando las matrices A y B, de tamaño 2 \times 2, calcule la suma indicada.

Ejemplo 2

Considerando las matrices A y B, de tamaño 4 \times 3, calcule la suma indicada.

Ejemplo 3

Considerando las matrices A y B, de tamaño, 1 \times 2 calcule la suma indicada.

Ejemplo 4

Considerando las matrices A y B, de tamaño, 4 \times 2 calcule la suma indicada.


Anuncios

Resta de Matrices

Sean A y B dos matrices de tamaño m \times n, definimos la resta A-B como una nueva matriz donde cada elemento ij de esta nueva matriz, está definido como la resta del elemento ij de la matriz A menos el elemento ij de la matriz B. Formalmente,

[A+B]_{ij} = [A]_{ij} - [B]_{ij}

O escrito de forma exhaustiva, tenemos que

Debemos tomar en cuenta que al restar la matriz B, cada uno de los elementos de esta matriz es multiplicado por -1. Veamos algunos ejemplos.

Ejemplos

Ejemplo 5

Considerando las matrices A y B, de tamaño, 2 \times2 calcule la suma indicada.

Ejemplo 6

Considerando las matrices A y B, de tamaño, 4 \times 2 calcule la suma indicada.

Ejemplo 7

Considerando las matrices A y B, de tamaño, 1 \times 4 calcule la suma indicada.

Ejemplo 8

Considerando las matrices A y B, de tamaño, 3 \times 1 calcule la suma indicada.


Anuncios

Multiplicación por un escalar

Diremos que un escalar es un número real que al multiplicarla por una matriz esta nos cambia la escala de cada uno de los elementos de ella. Definimos el producto de un escalar k por una matriz A, como una nueva matriz donde cada elemento ij de esta nueva matriz, está definido como el producto del escalar k por el elemento ij de la matriz A. Formalmente,

[k \cdot A]_{ij} = k \cdot [A]

O escrito de forma exhaustiva, tenemos que

Veamos algunos ejemplos.

Ejemplos

Ejemplo 9

Considerando la matriz A, de tamaño, 2 \times 2 calcule el producto por el escalar 4.

Ejemplo 10

Considerando la matriz A, de tamaño, 3 \times 1 calcule el producto por el escalar -4.

Ejemplo 11

Considerando la matriz A, de tamaño, 4 \times 2 calcule el producto por el escalar 7.

Ejemplo 12

Considerando la matriz A, de tamaño, 3 \times 3 calcule el producto por el escalar 9.


Anuncios

Producto entre Matrices

Sean A una matriz de tamaño m \times n y B una matriz de tamaño n \times p, definimos el producto A \times B como una nueva matriz donde cada elemento ij de esta nueva matriz, está definido el “producto” de la fila i de la matriz A por la columna j de la matriz B. Formalmente,

[A \times B]_{ij} = \sum_k^n [A]_{ij} \cdot [B]_{ij}

Debemos notar que para poder efectuar esta operación, el número de columnas de la matriz A debe ser exactamente igual al número de filas de la matriz B y aunque esta operación pareciera complicada, en los siguientes ejemplos veremos el procedimiento para calcular el producto entre dos matrices.

Ejemplos

Ejemplo 13

Considerando la matriz A, de tamaño, 2 \times 2 y la matriz B, de tamaño, 2 \times 2. Calcule el producto $A \times B$. Veamos en este ejemplo paso a paso como calcular este producto.

El elemento [A \times B]_{11} de la nueva matriz A \times B es el resultado de multiplicar la fila 1 por la columna 1.

El elemento [A \times B]_{12} de la nueva matriz A \times B es el resultado de multiplicar la fila 1 por la columna 2.

El elemento [A \times B]_{21} de la nueva matriz A \times B es el resultado de multiplicar la fila 2 por la columna 1.

El elemento [A \times B]_{22} de la nueva matriz A \times B es el resultado de multiplicar la fila 2 por la columna 2.

De esta forma, tenemos que

Entonces, aplicamos las operaciones involucradas

Ejemplo 14

Considerando la matriz A, de tamaño, 4 \times 2 y la matriz B, de tamaño, 2 \times 1. Calcule el producto A \times B.

Ejemplo 15

Considerando la matriz A, de tamaño, 1 \times 3 y la matriz B, de tamaño, 3 \times 2. Calcule el producto A \times B.

Ejemplo 16

Considerando la matriz A, de tamaño, 4 \times 3 y la matriz B, de tamaño, 3 \times 4. Calcule el producto A \times B.

Nota: Si podemos multiplicar A \times B, no necesariamente podemos multiplicar B \times A, esto quiere decir que el producto entre matrices no es conmutativo.


Anuncios

Transposición de matrices

En ocasiones, es necesario cambiar las filas por columnas de una matriz y viceversa, para esto definimos la operación de transposición. Sea A una matriz de tamaño m \times n decimos que la transposición de la matriz A es una nueva matriz de tamaño n \times m donde los elementos de la matriz A que están en la posición ij pasan a estar en la posición ji, a esta nueva matriz se le llama A traspuesta (o traspuesta) y la denotamos por A^{T} o A'. Formalmente,

[A^{T}]_{ij} = A_{ji}

O escrito de forma exhaustiva, tenemos que

Veamos algunos ejemplos.

Ejemplos

Ejemplos 17

Considerando la matriz A, de tamaño, 3 \times 3. Calcule la matriz transpuesta de A, es decir, A^{T}.

Ejemplos 18

Considerando la matriz A, de tamaño, 4 \times 1. Calcule la matriz transpuesta de A, es decir, A^{T}.

Ejemplo 19

Considerando la matriz A, de tamaño, 4 \times 2. Calcule la matriz transpuesta de A, es decir, A^{T}.

Ejemplo 20

Considerando la matriz A, de tamaño, 3 \times 4. Calcule la matriz transpuesta de A, es decir, A^{T}.


Radicales

Al definir las potencias, encontramos una forma de denotar el producto de un número multiplicado por él mismo reiteradas veces. De esta forma tenemos que

  • Al considerar el número nueve, tres es un número tal que al multiplicarlo por él mismo, el resultado es exactamente nueve, es decir,
    3^2 = 9.
  • Al considerar el número cuatro, dos es un número tal que al multiplicarlo por él mismo, el resultado es exactamente cuatro, es decir,
    4^2 = 36.
  • Al considerar el número sesenta y cuatro, ocho es un número tal que al multiplicarlo por él mismo, el resultado es exactamente sesenta y cuatro, es decir,
    8^2 = 64.

También pudiera interesarte

Anuncios

Esta idea es bastante intuitiva pero, ¿y si consideramos el número dos? ¿Cuál el número tal que al multiplicarlo por sí mismo, el resultado es exactamente dos? ¿Será uno? ¿Dos? ¿Uno y un medio? ¿Uno y un cuarto? Los números número enteros o fracciones de enteros en los que podemos pensar no aportarán ninguna solución. Es por esto que recurrimos a un nuevo número que satisface esta condición, lo llamaremos es la raíz cuadrada de dos y usamos la notación de radical (\sqrt{ \ \ }) para denotarlo de la siguiente manera

raíz cuadrada de dos | totumat.com

Aunque no sepamos exactamente toda la extensión decimal de este número sabemos que, por definición, es un número tal que al multiplicarlo por él mismo, el resultado es exactamente dos, es decir, \left( \sqrt{2} \right)^2 = 2. Esta notación se puede extender para otros números en los que se presente la misma situación.

  • Al considerar el número cinco, la raíz cuadrada de cinco es un número tal que al multiplicarlo por él mismo, el resultado es exactamente cinco, es decir,
    \left( \sqrt{5} \right)^2 = 5.
  • Al considerar el número doce, la raíz cuadrada de doce es un número tal que al multiplicarlo por él mismo, el resultado es exactamente doce, es decir,
    \left( \sqrt{12} \right)^2 = 12.
  • Al considerar el número treinta, la raíz cuadrada de treinta es un número tal que al multiplicarlo por él mismo, el resultado es exactamente treinta, es decir,
    \left( \sqrt{30} \right)^2 = 30.
  • Al considerar el número uno, la raíz cuadrada de uno es un número tal que al multiplicarlo por él mismo, el resultado es exactamente uno, es decir,
    \left( \sqrt{1} \right)^2 = 1.
    En este caso, notemos que \sqrt{1} = 1.
  • Al considerar el número menos tres, podemos decir de forma general que la raíz cuadrada de un número negativo no está definida pues no existe un número que multiplicado por sí mismo sea un número negativo.
Anuncios

Muy bien, ahora, ¿cuál el número tal que al multiplicarlo por sí mismo tres veces, el resultado es exactamente dos? A este número lo llamaremos es la raíz cúbica de dos y usamos la notación de radical (\sqrt{ \ \ }) con el índice tres para denotarlo de la siguiente manera

raíz cúbica de dos | totumat.com

Aunque no sepamos exactamente toda la extensión decimal de este número sabemos que, por definición, es un número tal que al multiplicarlo por él mismo tres veces, el resultado es exactamente dos, es decir, \left( \sqrt[3]{2} \right)^3 = 2. Esta notación se puede extender para otros números en los que se presente la misma situación.

  • Al considerar el número siete, la raíz cúbica de siete es un número tal que al multiplicarlo por él mismo tres veces, el resultado es exactamente siete, es decir,
    \left( \sqrt[3]{7} \right)^{3} = 7.
  • Al considerar el número quince, la raíz cúbica de quince es un número tal que al multiplicarlo por él mismo tres veces, el resultado es exactamente quince, es decir,
    \left( \sqrt[3]{15} \right)^{3} = 15.
  • Al considerar el número menos uno, la raíz cúbica de menos uno es un número tal que al multiplicarlo por él mismo tres veces, el resultado es exactamente menos uno, es decir,
    \left( \sqrt[3]{-1} \right)^{3} = -1.
    En este caso, notemos que \sqrt[3]{-1} = -1.
  • Al considerar el número menos veinticuatro, la raíz cúbica de menos veinticuatro es un número tal que al multiplicarlo por él mismo tres veces, el resultado es exactamente menos veinticuatro, es decir,
    \left( \sqrt[3]{-24} \right)^{3} = -24.

Los radicales se pueden usar para expresar números que cumplen con este tipo de condiciones. De forma general podemos decir que si consideramos un número a y n un número entero mayor que uno, entonces definimos la raíz n-ésima de a como un número tal que al multiplicarlo por sí mismo n veces, el resultado es exactamente a, usamos la notación de radical (\sqrt{ \ \ }) con el índice n para denotarlo de la siguiente manera

radicales, índice y base | totumat.com

Considerando que si n es un número par, la raíz n-ésima de a está definida sólo si a \geq 0. De esta forma, tenemos que

  • Al considerar el número ocho, la raíz sexta de ocho es un número tal que al multiplicarlo por él mismo seis veces, el resultado es exactamente ocho, es decir,
    \left( \sqrt[6]{8} \right)^{6} = 8.
  • Al considerar el número menos diez, la raíz quinta de menos diez es un número tal que al multiplicarlo por él mismo cinco veces, el resultado es exactamente menos diez, es decir,
    \left( \sqrt[5]{-10} \right)^{5} = -10.
  • Al considerar el número trece, la raíz vigésima de trece es un número tal que al multiplicarlo por él mismo veinte veces, el resultado es exactamente trece, es decir,
    \left( \sqrt[20]{13} \right)^{20} = 13.

Potencias y Exponentes

Al estudiar el producto entre números nos podemos encontrar con el producto de un número multiplicado por él mismo dos o más veces. Este tipo de productos tiene propiedades muy particulares. Formalmente, si a es un número real, definimos su n-ésima potencia como el producto de a multiplicado por él mismo n veces, donde n es un número natural, y lo denotamos la siguiente forma:

Potenciación, potencias base y exponente | totumat.com

Esta expresión se puede leer como a elevado a la n o formalmente, a elevada a la n-ésima potencia. También diremos que a es la base y n es el exponente.

Potenciación, potencias base y exponente | totumat.com

Veamos algunos ejemplos.

También pudiera interesarte

Anuncios

Ejemplos

Ejemplo 1

Efectúe el producto que se está definiendo en la expresión 5^{2}.

En este caso la base es igual a 5 y el exponente es igual a 2, entonces estamos multiplicando el número cinco por sí mismo dos veces de la siguiente forma:

5^{2} = 5 \cdot 5 = 25

Nota: La potencia 2 también se llama cuadrado, entonces 5^{2} se puede leer como cinco al cuadrado.

Ejemplo 2

Efectúe el producto que se está definiendo en la expresión (-6)^{2}.

En este caso la base es igual a -6 y el exponente es igual a 2, entonces estamos multiplicando el número menos seis por sí mismo dos veces de la siguiente forma:

(-6)^{2} = (-6) \cdot (-6) = 36

Nota: Todo número elevado al cuadrado es positivo, esto se debe a la ley de los signos, pues el producto de dos números negativos es positivo.

Ejemplo 3

Efectúe el producto que se está definiendo en la expresión 2^{3}.

En este caso la base es igual a 2 y el exponente es igual a 3, entonces estamos multiplicando el número dos por sí mismo tres veces de la siguiente forma:

2^{3} = 2 \cdot 2 \cdot 2 = 8

Nota: La potencia 3 también se llama cubo, entonces 2^{3} se puede leer como dos al cubo.

Anuncios

Ejemplo 4

Efectúe el producto que se está definiendo en la expresión 7^{10}.

En este caso la base es igual a 7 y el exponente es igual a 10, entonces estamos multiplicando el número siete por sí mismo diez veces de la siguiente forma:

7^{10} = 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 = 282475249

Ejemplo 5

Efectúe el producto que se está definiendo en la expresión \left( \frac{1}{2} \right)^{6}.

En este caso la base es igual a \left( \frac{1}{2} \right) y el exponente es igual a 6, entonces estamos multiplicando el número un medio por sí mismo seis veces de la siguiente forma:

\left( \frac{1}{2} \right)^{6} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{64}

Anuncios

Ejemplo 6

Efectúe la operación \left( -\frac{5}{2} \right)^2 usando la definición de potencia y las operaciones entre números racionales.

Debemos tomar en cuenta que si elevamos un número al cuadrado, esto es multiplicar un número por él mismo, dos veces. Entonces,

\left( -\frac{5}{2} \right)^2 = \left( -\frac{5}{2} \right) \cdot \left( -\frac{5}{2} \right)

Por otra parte, la fracción -\frac{5}{2} se puede reescribir como \frac{-5}{2}, entonces podemos reescribir este producto de la siguiente forma:

\left( -\frac{5}{2} \right) \cdot \left( -\frac{5}{2} \right) = \frac{-5}{2} \cdot \frac{-5}{2}

Finalmente, podemos efectuar el producto de las fracciones y recurriendo a la ley de los signos en el numerador, obtenemos lo siguiente:

\frac{(-5) \cdot (-5)}{2 \cdot 2} = \frac{25}{4}

Ejemplo 7

Efectúe la operación \left( -\frac{2}{3} \right)^3 usando la definición de potencia y las operaciones entre números racionales.

Debemos tomar en cuenta que si elevamos un número al cubo, esto es multiplicar un número por él mismo, tres veces. Entonces,

\left( -\frac{2}{3} \right)^3 = \left( -\frac{2}{3} \right) \cdot \left( -\frac{2}{3} \right) \cdot \left( -\frac{2}{3} \right)

Por otra parte, la fracción -\frac{2}{3} se puede reescribir como \frac{-2}{3}, , entonces podemos reescribir este producto de la siguiente forma:

\left( -\frac{2}{3} \right) \cdot \left( -\frac{2}{3} \right) \cdot \left( -\frac{2}{3} \right) = \frac{-2}{3} \cdot \frac{-2}{3} \cdot \frac{-2}{3}

Finalmente, podemos efectuar el producto de las fracciones y recurriendo a la ley de los signos en el numerador, obtenemos lo siguiente:

\frac{(-2) \cdot (-2) \cdot (-2)}{3 \cdot 3 \cdot 3} = \frac{-8}{27} = - \frac{8}{27}