Ejercicios Propuestos - Ecuaciones Diferenciales

Ejercicios Propuestos – Ecuaciones Diferenciales Ordinarias Lineales De Primer Orden

Al considerar la forma estándar de una ecuación diferencial ordinaria lineal no-homogénea

y' + P(x) \cdot y = f(x)

entonces el factor integrante correspondiente será

\textit{\Large e}^{\int P(x) dx}

Calcule la función y que satisface las siguientes ecuaciones diferenciales utilizando el factor integrante. Determine además, la función que satisface el valor inicial donde corresponda.

  1. y'- y = 1
  2. 5y' + 4y = -2
  3. 10y' - 10y = 3x
  4. 15y' + 7y = -4x^2; y(0)=1

  1. y'+ y = x + 1
  2. 3y' - y = 4x - 9
  3. -5y'- y = 2y + 3
  4. 4y'- 8y = y + 7x + 3 ; y(3)=-1

  1. y' + xy = 5x
  2. 8y' - x^2y = -6x^2
  3. -10y' + xy = 7x^3
  4. 12y' - x^3y = -8x^7; y(1)=0
  1. y' - \frac{y}{x} = x
  2. 2y' - \frac{3y}{x} = 8x
  3. 12y' + \frac{36y}{x+2} = -5x^2
  4. -3y' + \frac{2y}{-x-4} = 10(-x-4)^5; y(4)=-1

  1. y' + \frac{5y}{x} = \sqrt{x}
  2. -6y' - \frac{7y}{x} = -2\sqrt[3]{x}
  3. -20y' + \frac{40y}{-x+6} = -4\sqrt[5]{x^4}
  4. -9y' - \frac{y}{7x-1} = 3\sqrt[4]{7x-1}; y(-1)=2

  1. y' - y = \textit{\large e}^{x}
  2. -9y' + 4y = -2\textit{\large e}^{2x}
  3. 18y' - 5y = 3x\textit{\large e}^{x}
  4. -27y' + 11y = 6x\textit{\large e}^{-3x}; y(0)=1


Anuncios

Anuncio publicitario

¿Tienes alguna duda? Compártela en los comentarios.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.