Modelo de Harrod-Domar

Ecuaciones Diferenciales – Modelo de Harrod-Domar

Considerando las ecuaciones diferenciales ordinarias lineales de primer orden, particularmente, el caso homogéneo con coeficiente constante de la forma

x' + ax = 0

Sabemos calcular la solución de este tipo de ecuaciones. Veremos que este tipo de ecuaciones se puede usar para describir la relación de la inversión anual con el ingreso anual en una economía, a través del Modelo de Harrod-Domar

También pudiera interesarte

Anuncios

El sistema en el que se basa este modelo está construido sobre la siguiente hipótesis: Si I(t) es una variable que mide la inversión por año y Y(t) es una variable que mide el flujo de ingresos por año; cualquier cambio en la tasa de ingreso por año afectará la demanda agregada y productividad de la economía.

Teniendo en cuenta que el efecto de la demanda en un cambio de I(t) opera a través de un proceso multiplicativo. Un incremento en I(t) incrementará la tasa del flujo de ingresos por año Y(t) de forma proporcional, es decir, como un múltiplo del incremento en I(t).

Los agentes involucrados tomarán una porción de la producción (esta cantidad es predecible) con el propósito de acumular capital, esta proporción es llamada propensión marginal al ahorro y la denotaremos con s. Para este caso supondremos que existe un sólo bien, de esta forma no habrá cambios en precios relativos ni en la composición del capital. De esta forma se simplifica el modelo y como I(t) es el único flujo de gastos que influye en la tasa del flujo de ingresos, tenemos que

Y'(t) = \frac{I'(t)}{s}

El efecto de la capacidad de inversión se refleja en el cambio de la tasas de producción potencial que la economía puede producir. La tasa de capacidad-capital está definida por

\rho = \frac{k(t)}{K(t)}

donde k(t) es la capacidad o flujo de producción potencial, K(t) es el capital y \rho representa una constante (predeterminada) de tasas de capacidad-capital.

Después de un sencillo despeje en ésta última igualdad, tenemos que

k(t) = \rho K(t)

y derivando respecto a t en ambos lados de la ecuación, obtenemos

k'(t) = \rho K'(t) = \rho I(t)

ya que un incremento en el capital es igual a la capacidad de inversión, es decir, K'(t) = I(t).

Por otra parte, definimos equilibrio como una situación en la que la capacidad productiva es totalmente aprovechada, es decir,

Y(t) = k(t)

entonces, al considerar un equilibrio, existe un balance entre los cambios respectivos en la capacidad productiva y demanda agregada, esto es,

Y'(t) = k'(t)

Teniendo en cuenta todas estas definiciones, nos preguntamos: ¿Qué trayectoria de tiempo de la inversión I(t) mantendrá la economía en equilibrio todo el tiempo? Para responder esta pregunta tomaremos las ecuaciones Y'(t) = \frac{I(t)}{s} y k'(t)=\rho I(t) para sustituirlas en la ecuación Y'(t)=k'(t), de esta forma obtenemos que

\frac{I'(t)}{s} = \rho I(t)

\Rightarrow I'(t)=s\rho I(t)

Calculamos la solución de esta ecuación diferencial con la condición inicial I(0):

\frac{dI}{dt} = s\rho I

\Rightarrow \frac{dI}{I} = s\rho dt

\Rightarrow \frac{dI}{I} = s\rho dt

\Rightarrow \int \frac{dI}{I} = \int s\rho dt

\Rightarrow \textit{\Large e}^{\ln(I)} = \textit{\Large e}^{s\rho t + C}

\Rightarrow I = C \cdot \textit{\Large e}^{s\rho t}

Al considerar el valor inicial I(0), tenemos que

I(0) = C \cdot \textit{\Large e}^{s\rho (0)} = \textit{\Large e}^{0} = C \cdot \textit{\Large e}^{0} = C \cdot 1 = C

Por lo tanto la trayectoria requerida viene dada por I(t) = I(0) \cdot \textit{\Large e}^{s \rho t}, donde I(0) es la tasa inicial de inversión.

Esto implica que para mantener el balance entre la capacidad productiva y la demanda sobre el tiempo, la tasa de flujo de inversión debe crecer a una tasa exponencial de \rho s.

Sustituyendo I(t) es K'(t)=I(t), tenemos que

K'(t)=I(0) \cdot \textit{\Large e}^{s \rho t}

\Longrightarrow \int K'(t) dt = I(0) \cdot \textit{\Large e}^{s \rho t} dt

\Longrightarrow K(t) = \frac{I(0)}{\rho s} \cdot \textit{\Large e}^{s \rho t} + C

Al considerar el valor inicial K(0), la solución será

K(t) = \frac{I(0)}{\rho s} \cdot \textit{\Large e}^{s \rho t} + K(0) - \frac{I(0)}{\rho s}

Finalmente, tenemos que Y(t) = k(t) \Rightarrow Y(t) = \rho K(t) y en consecuencia,

Y(t) = \frac{I(0)}{s} \cdot \textit{\Large e}^{s \rho t} +\rho K(0) - \frac{I(0)}{s}


¿Tienes dudas? ¿Necesitas más ejemplos? No dudes en escribir.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios .