Ecuaciones Diferenciales Ordinarias lineales con coeficientes constantes (2 de 2)

Los métodos para calcular al solución ecuaciones diferenciales ordinarias de orden superior dependen de la forma en que la ecuación esté expresada, considerando el caso lineal, es posible particularizarlo aún más, pues si consideremos una ecuación diferencial de la forma

a_n(x) y^{(n)} + \ldots + a_1(x) y' + a_0(x) y = g(x)

Las funciones a_0(x), a_1(x), \ldots, a_n(x) que definen los coeficientes de la ecuación, pueden considerarse como funciones constantes, de forma que la ecuación diferencial queda expresada como

a_n y^{(n)} + \ldots + a_1 y' + a_0 y = g(x)

Donde a_0, a_1, \ldots, a_n son números reales.

Más aún, será de vital importancia clasificar estas ecuaciones dependiendo del valor de g(x). Diremos que una ecuación de este tipo es no-homogénea si g(x) \neq 0, y durante esta sección, este es el caso que desarrollaremos.

Anuncios

Ecuaciones Diferenciales Ordinarias lineales no-homogéneas con coeficientes constantes

Habiendo clasificado las ecuaciones diferenciales ordinarias lineales como homogéneas y no-homogéneas, pudimos establecer un principio (de superposición) que nos determinó la forma en que está expresada la solución general del caso homogéneo. Durante esta sección, podremos generalizar este principio para el caso no-homogéneo. Pero antes debemos precisar algunos elementos.

Consideremos una ecuación diferencial ordinaria lineal no-homogénea de orden n expresada de la forma

a_n(x) y^{(n)} + \ldots + a_1(x) y' + a_0(x) y = g(x)

Definimos su ecuación homogénea asociada, considerando g(x)=0 de la siguiente forma

a_n(x) y^{(n)} + a_{n-1}(x) y^{(n-1)} + \ldots + a_1(x) y' + a_0(x) y = 0

Sabiendo como calcula la solución general esta ecuación homogénea asociada, veremos en el siguiente teorema que esta juega un papel fundamental para poder definir la solución general de la ecuación no-homogénea asociada.

Teorema (Principio de Superposición – Ecuaciones No-Homogéneas)

Si y_p es una solución particular de una ecuación diferencial ordinaria lineal no-homogénea de orden n de la forma

a_n(x) y^{(n)} + \ldots + a_1(x) y' + a_0(x) y = g(x)

definida en un intervalo I; y_1,y_2, \ldots ,y_n conforman un conjunto fundamental de soluciones de la ecuación homogénea asociada en el intervalo I, entonces la siguiente combinación lineal

y = c_ 1y_1 + c_2 y_2 + \ldots + c_n y_n + y_p

también es una solución de la ecuación no-homogénea.

De este teorema, diremos que c_ 1y_1 + c_2 y_2 + \ldots + c_n y_n es la solución complementaria y la denotaremos por y_c. De esta forma, podemos expresar la solución de una ecuación diferencial ordinaria lineal no-homogénea de la siguiente forma

El Principio de Superposición para ecuaciones no-homogéneas puede ser generalizado tomando en cuenta que si tenemos k ecuaciones diferenciales ordinarias lineales no-homogéneas de la forma

a_n(x) y^{(n)} + \ldots + a_1(x) y' + a_0(x) y = g_1(x)
a_n(x) y^{(n)} + \ldots + a_1(x) y' + a_0(x) y = g_2(x)
\vdots
a_n(x) y^{(n)} + \ldots + a_1(x) y' + a_0(x) y = g_k(x)

donde y_{p_1},y_{p_2}, \ldots ,y_{p_k} son soluciones particulares correspondientes. Entonces, la suma de todas estas soluciones particulares,

y_p = y_{p_1} + y_{p_2} + \ldots + y_{p_k}

Será una solución particular de la ecuación diferencial ordinaria lineal no-homogénea

a_n(x) y^{(n)} + \ldots + a_1(x) y' + a_0(x) y = g_1(x) + \ldots + g_k(x)

Anuncios

Método de los Coeficientes Indeterminados

Conociendo esta última generalización, veamos un método que se basa en intuir cómo debería ser la solución de una ecuación diferencial ordinaria lineal no-homogénea fijándonos en la forma en que está expresada la función g(x). Desarrollaremos este método para tres formas básicas de la función g(x).

Forma Polinómica

Si g(x) es un polinomio de grado m expresado de la forma

g(x) = a_n x^n + \ldots + a_1 x + a_0

entonces una solución particular y_p debería tener también forma polinómica pues derivando polinomios, obtenemos polinomios, es decir, de la forma

y_p(x)= A_n x^n + \ldots + A_1 x + A_0

Forma Exponencial

Si g(x) es una función exponencial expresada de la forma

g(x) = a \textit{\Large e}^{m x}

entonces una solución particular y_p debería tener también forma exponencial pues derivando funciones exponenciales, obtenemos funciones exponenciales, es decir, de la forma

y_p(x) = A \textit{\Large e}^{m x}

De forma general, si g(x) es una función exponencial expresada de la forma

g(x) = a_n x^n \textit{\Large e}^{m x} + \ldots + a_1 x \textit{\Large e}^{m x} + a_0 \textit{\Large e}^{m x}

entonces una solución particular y_p debería tener también forma polinómica pues derivando funciones exponenciales, obtenemos funciones exponenciales, es decir, de la forma

y_p(x)= A_n x^n \textit{\Large e}^{m x} + \ldots + A_1 x \textit{\Large e}^{m x} + A_0 \textit{\Large e}^{m x}

Forma Trigonométrica

Si g(x) está expresada como la suma de senos y cosenos de la forma

g(x) = a \sin(x) + b \cos(x)

entonces una solución particular y_p debería tener también forma de suma de senos y cosenos pues \emph{derivando senos y cosenos, obtenemos senos y cosenos}, es decir, de la forma

y_p(x)= A \sin(x) + B \cos(x)


Estos tres casos pueden combinarse ya sea con sumándolos o multiplicándolos entre sí, de esta forma podemos ampliar el espectro de soluciones que podemos considerar para ecuaciones diferenciales ordinarias lineales no-homogéneas con coeficientes constantes.

Para entender como aplicar este método, veamos algunos ejemplos que ilustrarán con precisión el desarrollo del mismo.

Anuncios

Ejemplos

Ejemplo 1

Calcule la solución de la siguiente ecuación diferencial ordinaria lineal homogénea con coeficientes constantes

y'' + 4y'-2y = 2x^2 - 3x +6

Antes de abordar esta ecuación, debemos recordar que la solución general de este tipo de ecuaciones se expresa como

y = y_c + y_p

Como primer paso debemos calcular la solución complementaria y_c. Considerando la ecuación homogénea asociada y'' + 4y'-2y=0, podemos expresar su ecuación auxiliar m^2 + 4m - 2 = 0 y calcular su solución utilizando el método del discriminante:

m = \frac{-(4) \pm \sqrt{(4)^2-4(1)(-2)}}{2(1)} = \frac{-4 \pm \sqrt{24}}{2} = \frac{-4 \pm 2\sqrt{6}i}{2} = -2 \pm i \sqrt{6}

Por lo tanto, expresamos la solución complementaria de la siguiente manera:

y_c = c_1 \textit{\Large e}^{-2x} cos(\sqrt{6}) + c_2 \textit{\Large e}^{-2x} sen(\sqrt{6})

Como segundo paso, debemos notar que en la ecuación diferencial planteada, g(x)=2x^2-3x+6, es una función polinómica de segundo grado. Así, intuitivamente nuestra solución particular debería tener la siguiente forma

y_p = Ax^2 + Bx + C

Nuestro propósito será el de hallar A, B y C y para esto sustituimos y_p en la ecuación original pues esta debe satisfacer la igualdad. Entonces

y'_p \ = \ 2Ax + B

y''_p \ = \ 2A

Sustituimos en la ecuación diferencial que hemos planteado originalmente para obtener

Considerando únicamente la expresión que está del lado izquierdo de la ecuación, expandimos distribuyendo los factores involucrados y posteriormente agrupamos los elementos que multiplican a x, x^2 y los términos independientes.

2A + 8Ax + 4B - 2Ax^2 - 2Bx - 2C
\Rightarrow \; - 2Ax^2 + 8Ax - 2Bx + 2A + 4B - 2C
\Rightarrow \; (-2A)x^2 + (8A - 2B)x + (2A + 4B - 2C)

Esta última expresión debe ser exactamente igual a 2x^2 - 3x +6, entonces los coeficientes correspondientes también deben ser exactamente iguales, por lo que planteamos el siguiente sistema de ecuaciones lineales:

Así, nuestra solución particular viene dada por

y_p = -x^2 -\frac{5}{2}x -9

Finalmente, la solución general está expresada de la siguiente manera:

Anuncios

Ejemplo 2

En este ejemplo veremos que debemos ser cuidadosos al calcular la solución pues la escogencia intuitiva pudiera no ser la más correcta, así que debemos recurrir a otra escogencia más general. Calcule la solución de la siguiente ecuación diferencial ordinaria lineal homogénea con coeficientes constantes

3y''' - 15y''+ 7y'= \textit{\Large e}^{3x} -8x

Antes de abordar esta ecuación, debemos recordar que la solución general de este tipo de ecuaciones se expresa como

y = y_c + y_p

Como primer paso debemos calcula la solución complementaria y_c. Considerando la ecuación homogénea asociada 3y''' - 15y''+ 7y'=0, podemos expresar su ecuación auxiliar 3m^3 - 15m^2 + 7m = m(3m^2 - 15m + 7) = 0 y calcular su solución utilizando el método del discriminante una vez que hemos factorizado:

m = \frac{-(-15) \pm \sqrt{(-15)^2-4(3)(7)}}{2(3)} = \frac{15 \pm \sqrt{84}}{6} = \frac{15 \pm 2\sqrt{21}}{6}

Por lo tanto, expresamos la solución complementaria de la siguiente manera:

y_c = c_1\textit{\Large e}^{0 \cdot x} + c_2 \textit{\Large e}^{\left( \frac{15 + 2\sqrt{21}}{6} \right)x} + c_3 \textit{\Large e}^{\left( \frac{15 - 2\sqrt{21}}{6} \right)x}

Es decir,

y_c = c_1 + c_2 \textit{\Large e}^{\left( \frac{15 + 2\sqrt{21}}{6} \right)x} + c_3 \textit{\Large e}^{\left( \frac{15 - 2\sqrt{21}}{6} \right)x}

Como segundo paso, debemos notar que en la ecuación diferencial planteada, g(x)=\textit{\Large e}^{3x} - 8x, una función exponencial más una función polinómica de primer grado. Así, intuitivamente nuestra solución particular debería tener la siguiente forma

y_p = A\textit{\Large e}^{3x} + Bx + C

Nuestro propósito será el de hallar A, B y C y para esto sustituimos y_p en la ecuación original pues esta debe satisfacer la igualdad. Entonces

y'_p \ = \ 3A\textit{\Large e}^{3x} + B

y''_p \ = \ 9A\textit{\Large e}^{3x}

y'''_p \ = \ 27A\textit{\Large e}^{3x}

Sustituimos en la ecuación diferencial que hemos planteado originalmente para obtener

Considerando únicamente la expresión que está del lado izquierdo de la ecuación, efectuamos los factores involucrados y posteriormente agrupamos los elementos que multiplican a \textit{\Large e}^{3x} y los términos independientes.

81A\textit{\Large e}^{3x} - 135A\textit{\Large e}^{3x}+ 21A\textit{\Large e}^{3x} + 7B
\Rightarrow \; (81 - 135 + 21) A\textit{\Large e}^{3x} + 7B
\Rightarrow \; -33A\textit{\Large e}^{3x} + 7B

Esta última expresión debe ser exactamente igual a \textit{\Large e}^{3x} -8x, entonces los coeficientes correspondientes también deben ser exactamente iguales, por lo que planteamos el siguiente sistema de ecuaciones lineales:

Sin embargo, estos coeficientes no proveen una solución pues

y_p = -\frac{1}{33}\textit{\Large e}^{3x} + 0x + C = -\frac{1}{33}\textit{\Large e}^{3x} + C

y al plantear de esta forma la solución particular, no se satisface la igualdad por lo tanto será necesario replantearla.

La teoría sugiere aumentar en un grado la función donde se presenta el problema, por lo tanto, en este caso aumentaremos en un grado el elemento polinómico de la solución particular. Entonces, si consideramos y_p \ = \ A\textit{\Large e}^{3x} + Bx^2 + Cx + D, tenemos que

y'_p \ = \ 3A\textit{\Large e}^{3x} + 2Bx + C

y''_p \ = \ 9A\textit{\Large e}^{3x} + 2B

y'''_p \ = \ 27A\textit{\Large e}^{3x}

Sustituimos estas nuevas expresiones en la ecuación diferencial que hemos planteado originalmente para obtener

Considerando únicamente la expresión que está del lado izquierdo de la ecuación, efectuamos los factores involucrados y posteriormente agrupamos los elementos que multiplican a \textit{\Large e}^{3x} y los términos independientes.

81A\textit{\Large e}^{3x} - 135A\textit{\Large e}^{3x} -30B + 21A\textit{\Large e}^{3x} + 14Bx + 7C
\Rightarrow \; (81 - 135 + 21) A\textit{\Large e}^{3x} + 14Bx + 7C
\Rightarrow \; -33A\textit{\Large e}^{3x} + 14Bx + 7C

Esta última expresión debe ser exactamente igual a \textit{\Large e}^{3x} -8x, entonces los coeficientes correspondientes también deben ser exactamente iguales, por lo que planteamos el siguiente sistema de ecuaciones lineales:

Así, nuestra solución particular viene dada por

y_p = -\frac{1}{33}\textit{\Large e}^{3x} -\frac{4}{7}x^2 + \frac{120}{49}x + D

Finalmente, expresamos nuestra solución.


Anuncio publicitario

Un comentario en “Ecuaciones Diferenciales Ordinarias lineales con coeficientes constantes (2 de 2)

¿Tienes alguna duda? Compártela en los comentarios.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.