Ecuaciones Diferenciales

Definición

Definimos una ecuación diferencial como una expresión matemática que establece una relación entre una o más variables independientes; una o más variables dependientes; y las derivadas de estas variables dependientes a través de una igualdad. Para simplificar, empezaremos considerando una variable independiente x y una variable que dependiente y, entonces de forma general, diremos que

F \left( x,y,y',y'', \dots ,y^{(n)} \right)=0

es una ecuación diferencial y de forma particular, si consideramos la siguiente relación

y - y' = 0

diremos que ésta es una ecuación diferencial.

Nuestro propósito será el de determinar qué función y es la que satisface esta igualdad y en este ejemplo, a simple vista podemos notar que y=\textit{\Large e}^x es una solución de esta ecuación diferencial pues \textit{\Large e}^x - \left( \textit{\Large e}^x \right)' = 0. El estudio de las ecuaciones diferenciales tiene su base en el desarrollo de distintas técnicas para hallar la solución de distintas ecuaciones diferenciales y para esto debemos clasificarlas.

Las ecuaciones diferenciales se clasifican de tres formas: Por tipo, por orden y por linealidad.

Por tipo: Si la ecuación diferencial incolucra derivadas respecto a sólo una variable independiente, diremos que la ecuación diferencial es ordinaria. En otro caso, diremos que es una ecuación diferencial parcial.

Por linealidad: Una ecuación diferencial es lineal si ésta es lineal respecto a la variable dependiente y sus derivadas.

Por orden: El orden de una ecuación diferencial viene dada por la derivada de mayor orden que se encuentre involucrada en ésta.

A medida que aprendamos las técnicas para calcular soluciones de ecuaciones diferenciales, veremos otras formas de clasificarlas, por ahora consideremos algunos ejemplos de ecuaciones diferenciales para determinar la clasificación que hemos visto.

Ejemplos

Ejemplo 1

Si consideramos la ecuación diferencial y - y' = 0 , entonces

  • Es ordinaria pues si tomamos y'=\frac{dy}{dx}, notamos que ésta sólo involucra la derivada de sólo una variable independiente.
  • Es lineal ya que el exponente de y y y' es exactamente igual a uno.
  • Es de primer orden porque la derivada de mayor orden es de primer orden.

Por lo tanto es una Ecuación Diferencial Ordinaria lineal de primer orden.

Ejemplo 2

Si consideramos la ecuación diferencial 3xy''' + 2x^4y^3 = 6x^3 , entonces

  • Es ordinaria pues ésta sólo involucra una variable independiente.
  • No es lineal ya que la variable dependiente y está elevada al cubo.
  • Es de tercer orden porque la derivada de mayor orden es de tercer orden.

Por lo tanto es una Ecuación Diferencial Ordinaria no lineal de primer orden.

Ejemplo 3

Si consideramos la ecuación diferencial 5 \frac{\partial y}{\partial x } + 9 \frac{\partial y}{\partial z } = 6x^3y - 7z^5, entonces

  • Es parcial pues ésta involucra las derivadas respecto a más de una variable independiente.
  • Es lineal ya que el exponente de y, \frac{\partial y}{\partial x } y \frac{\partial y}{\partial z } es exactamente igual a uno.
  • Es de primer orden porque la derivada de mayor orden es de primer orden.

Por lo tanto es una Ecuación Diferencial Parcial lineal de primer orden.


Nota: Todas las ecuaciones diferenciales que consideraremos mientras estudiemos los aspectos básicos, serán Ecuaciones Diferenciales Ordinarias, es por esto que siempre consideraremos y' = \frac{dy}{dx}, salvo que se indique otra variable dependiente u otra variable independiente.


Solución de una Ecuación Diferencial

Si consideramos la ecuación diferencial

F \left( x,y,y',y'', \ldots ,y^{(n)} \right)=0

Diremos que una función y_0 definida en un intervalo I con n derivadas continuas en el intervalo I es la solución de esta ecuación diferencial de n-ésimo orden, si esta satisface la igualdad planteada, es decir, tal que

F \left( x,y_0,y_0',y_0'', \ldots ,y_0^{(n)} \right)=0

Consideremos algunos ejemplos para que ilustrar esta idea con mayor claridad.

Ejemplos

Ejemplo 1

Si consideramos la ecuación diferencial ordinaria y - y' = 0

La función y_0 = \textit{\Large e}^{x} es una solución de esta ecuación diferencial, pues

\textit{\Large e}^{x} - \left( \textit{\Large e}^{x} \right)' = \textit{\Large e}^{x} - \textit{\Large e}^{x} = 0

Diremos que esta es una solución particular pues debemos notar que y_0 no es la única solución, si consideramos y_1 = 3 \textit{\Large e}^{x}, esta también es una solución particular, ya que

3\textit{\Large e}^{x} - \left( 3\textit{\Large e}^{x} \right)' = 3\textit{\Large e}^{x} - 3\textit{\Large e}^{x} = 0

De forma general, si consideramos y = C \cdot \textit{\Large e}^{x} para cualquier constante real C diremos que este tipo de solución es una solución general de la ecuación diferencial.

Ejemplo 2

Si consideramos la ecuación diferencial ordinaria xy' - 2y = 0

La función y_0 = x^2 es una solución de esta ecuación diferencial, pues

x(x^2)' - 2(x^2) = x(2x) - 2x^2 = x^2 - x^2 = 0

Diremos que esta es una solución particular pues debemos notar que y_0 no es la única solución, si consideramosy_1 = -5x^2, esta también es una solución particular, ya que

x(-5x^2)' - 2(-5x^2) = x(-10x) +10x^2 = -10x^2 + 10x^2 = 0

De forma general, si consideramos y = C \cdot x^2 para cualquier constante real C diremos que esta es la solución general de la ecuación diferencial.

Ejemplo 3

Si consideramos la ecuación diferencial ordinaria y' - x \textit{\Large e}^{x} = 0.

La función y_0 = x \textit{\Large e}^{x} - \textit{\Large e}^{x} es una solución de esta ecuación diferencial, pues

\left( x \textit{\Large e}^{x} - \textit{\Large e}^{x} \right)' - x \textit{\Large e}^{x} = \left( \textit{\Large e}^{x} + x \textit{\Large e}^{x} - \textit{\Large e}^{x} \right) - x\textit{\Large e}^{x} = 0

Diremos que esta es una solución particular pues debemos notar que y_0 no es la única solución, si consideramos y_1 = x \textit{\Large e}^{x} - \textit{\Large e}^{x} + 1, esta también es una solución particular, ya que

\left( x \textit{\Large e}^{x} - \textit{\Large e}^{x} + 1 \right)' - x \textit{\Large e}^{x} = \left( \textit{\Large e}^{x} + x \textit{\Large e}^{x} - \textit{\Large e}^{x} \right) - x\textit{\Large e}^{x} = 0

De forma general, si consideramos x \textit{\Large e}^{x} - \textit{\Large e}^{x} + C para cualquier constante real Cdiremos que esta es la solución general de la ecuación diferencial.

Ejemplo 4

Si consideramos la ecuación diferencial ordinaria xy' + y = 0

La función y_0 = \frac{1}{x} es una solución de esta, pues

x\left( \frac{1}{x} \right)' + \frac{1}{x} = x\left(-\frac{1}{x^2} \right) + \frac{1}{x} = - \frac{1}{x} + \frac{1}{x} = 0

Diremos que esta es una solución particular pues debemos notar que la pena notar que y_0 no es la única solución, si consideramos y_1 = \frac{2}{x}, esta también es una solución particular, ya que

x\left( \frac{2}{x} \right)' + \frac{2}{x} = x\left( -\frac{2}{x^2} \right) + \frac{2}{x} = - \frac{2}{x} + \frac{2}{x} = 0

De forma general, si consideramos \frac{C}{x} para cualquier constante real Cdiremos que esta es la solución general de la ecuación diferencial.


Tomando en cuenta los ejemplos expuestos, las soluciones de los primeros ejemplos están definidas para todos los números reales, sin embargo, esto no ocurre al considerar las soluciones de xy' + y = 0 pues particularmente, la función y_0 = \frac{1}{x} no está definida cuando x=0. En este último caso, los intervalos (-\infty,0) y (0,+\infty) son los intervalos más grandes donde la solución está definida.

Entonces, es importante mencionar que al calcular la solución de una ecuación diferencial, por definición, esta debe estar definida en intervalos, es por esto que siempre consideraremos el mayor intervalo donde la solución y sus derivadas están definidas.


Problemas de Valor Inicial

Hay ecuaciones diferenciales cuya solución está condicionada sobre un punto, este tipo de condiciones es llamado problemas de condición inicial. Formalmente, diremos que la ecuación diferencial tiene un problema de valor inicial si la solución debe cumplir con la condición y(x_0) = y_0. Sin embargo, ¿cómo sabemos que en efecto podemos encontrar la solución de una ecuación que cumpla con esa condición? A continuación veremos un teorema que nos permitirá determinar si una ecuación diferencial con un problema de valor inicial tiene solución.

Teorema (de Existencia y Unicidad)

Considerando una ecuación diferencial de la forma \frac{dy}{dx} = f(x,y) y R una región rectangular en el plano XY que contiene al punto (x_0,y_0) en su interior, definida por

a \leq x \leq b \ \text{ y } \ c \leq y \leq d

Si f(x,y) y \frac{\partial f}{\partial y} son funciones continuas en la región R, entonces existe un intervalo I_0 centrado en x_0 contenido en [a,b] y una única función y(x), definida en el intervalo I_0 que es solución del problema de valor inicia y(x_0) = y_0.

Las ecuaciones diferenciales que consideraremos de aquí en adelante cumplirán con las condiciones del Teorema de Existencia y Unicidad salvo que se diga lo contrario, sin embargo, siempre es importante verificar que se cumplan las condiciones antes de empezar a calcular la solución de una ecuación diferencial.

Ejemplos

Ejemplo 5

Si consideramos la ecuación diferencial ordinaria y - y' = 0 con problema de valor inicial y(0)=1, esta ecuación cumple con las condiciones del teorema de existencia y unicidad, pues

y' = y \Rightarrow \frac{dy}{dx} = f(x,y) = y \Rightarrow \frac{\partial f}{\partial y} = 1

Así, f(x,y) y \frac{\partial f}{\partial y} son funciones continuas en cualquier región R del plano XY, existe un intervalo I_0 centrado en x_0 = 0 y una única función y(x), definida en el intervalo I_0 que es solución de la ecuación diferencial con problema de valor inicial y(0) = 1.

Particularmente la función y = \textit{\Large e}^{x} es una solución de esta ecuación diferencial que satisface la condición dada por el valor inicial, pues

y(0) = \textit{\Large e}^{0} = 1

Ejemplo 6

Si consideramos la ecuación diferencial ordinaria xy' - 2y = 0 con problema de valor inicial y(2)=4, esta ecuación cumple con las condiciones del teorema de existencia y unicidad, pues

xy' - 2y = 0 \Rightarrow \frac{dy}{dx} = f(x,y) = \frac{2y}{x} \Rightarrow \frac{\partial f}{\partial y} = \frac{2}{x}

Así, considerando que x_0=2, f(x,y) y \frac{\partial f}{\partial y} son funciones continuas en cualquier región R del plano XY tal que 0 < x < b (b > 2), existe un intervalo I_0 centrado en x_0 = 2 y una única función y(x), definida en el intervalo I_0 que es solución de la ecuación diferencial con problema de valor inicial y(2) = 4.

Particularmente la función y = x^2 es una solución de esta ecuación diferencial que satisface la condición dada por el valor inicial, pues

y(2) = (2)^2 = 4

Ejemplo 7

Si consideramos la ecuación diferencial ordinaria y' - x \textit{\Large e}^{x} = 0 con problema de valor inicial y(1)=0, esta ecuación cumple con las condiciones del teorema de existencia y unicidad, pues

y' - x \textit{\Large e}^{x} = 0 \Rightarrow \frac{dy}{dx} = f(x,y) = x \textit{\Large e}^{x} \Rightarrow \frac{\partial f}{\partial y} = 0

Así, f(x,y) y \frac{\partial f}{\partial y} son funciones continuas en cualquier región R del plano XY, existe un intervalo I_0 centrado en x_0 = 1 y una única función y(x), definida en el intervalo I_0 que es solución de la ecuación diferencial con problema de valor inicial y(1) = 0.

Particularmente la función y = x \textit{\Large e}^{x} - \textit{\Large e}^{x} es una solución de esta ecuación diferencial que satisface la condición dada por el valor inicial, pues

y(0) = (1) \textit{\Large e}^{1} - \textit{\Large e}^{1} = 0

Ejemplo 8

Si consideramos la ecuación diferencial ordinaria xy' + y = 0 con problema de valor inicial y(1)=1, esta ecuación cumple con las condiciones del teorema de existencia y unicidad, pues

xy' + y = 0 \Rightarrow \frac{dy}{dx} = f(x,y) = -\frac{y}{x} \Rightarrow \frac{\partial f}{\partial y} = -\frac{1}{x}

Así, considerando que x_0=1, f(x,y) y \frac{\partial f}{\partial y} son funciones continuas en cualquier región R del plano XY tal que 0 < x < b (b > 1), existe un intervalo I_0 centrado en x_0 = 1 y una única función y(x), definida en el intervalo I_0 que es solución de la ecuación diferencial con problema de valor inicial y(1) = 1.

Particularmente la función y = \frac{1}{x} es una solución de esta ecuación diferencial que satisface la condición dada por el valor inicial, pues

y(1) = \frac{1}{1} = 1


Autor: Anthonny Arias

Coordinador de Matemáticas de la Facultad de Ciencias Económicas y Sociales, Universidad de Los Andes, Mérida, Venezuela.

¿Tiendes dudas? ¿Requieres más ejemplos? No dudes en escribir.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios .