La Ecuación General de la Recta

  1. La Ecuación General de la Recta
    1. Ejemplos
      1. Ejemplo 1
      2. Ejemplo 2
  2. Cómo graficar rectas en el plano cartesiano
    1. Ejemplos
      1. Ejemplo 3
      2. Ejemplo 4
      3. Ejemplo 5

Al definir las rectas, hemos dicho que la ecuación canónica de la recta permite expresar de forma analítica, cualquier recta en el plano cartesiano, sin embargo, hay un tipo de rectas que no se puede expresar de esta forma.

Para entender esto, veamos la ecuación punto-punto y estudiemos dos casos que nos interesarán de forma particular. Si consideramos dos puntos en el plano cartesiano, digamos P_1 = (x_1,y_1) y P_2 = (x_2,y_2), dependiendo de los valores de valores que estos tengan en el Eje X y eje Y, se pudieran presentar los siguientes casos:

  • Si y_2 = y_1, entonces la pendiente m queda expresada de la forma \frac{0}{r}, donde r es un número real distinto de cero.
  • Si x_2 = x_1, entonces la pendiente m queda expresada de la forma \frac{r}{0}, donde r es un número real distinto de cero.

De esta forma, podemos notar que en el primer caso, la pendiente es nula y; en el segundo caso, la pendiente no está definida, pues la división entre cero no está definida. Entonces, ¿cómo definimos las rectas que pasan a través de estos puntos?

También pudiera interesarte

Anuncios

La Ecuación General de la Recta

Es necesario recurrir a una ecuación que permita abarcar de forma general, todas las rectas en el plano cartesiano. esto lo haremos definiendo la recta no como una ecuación explícita, sino como una ecuación implícita. Es decir, no como una variable (y) que depende explícitamente de otra variable (x), sino como una relación entre ambas variables.

Entonces, si a, b y c son números reales tal que a y b no son iguales a cero al mismo tiempo, definimos La Ecuación General La Recta como una relación entre dos variables x y y a través de una igualdad de la siguiente forma:

ax + by + c = 0

De esta forma, podemos cubrir lo dos casos que hemos expuestos ya que,

  • Si a = 0, entonces la ecuación general de la recta será de la forma y=r para algún número real r, es decir, todos los puntos de esta recta tendrán la misma coordenada en el Eje Y y su gráfica será una recta totalmente horizontal.
  • Si b = 0 , entonces la ecuación general de la recta será de la forma x=r para algún número real r, es decir, todos los puntos de esta recta tendrán la misma coordenada en el Eje X y su gráfica será una recta totalmente vertical.

Consideremos dos ejemplos que ilustren precisamente estos dos casos.

Ejemplos

Ejemplo 1

Calcule la ecuación general de la recta que pasa por los puntos P_1 = (1,2) y P_2 = (-3,2).

Podemos abordar este caso notando inmediatamente que la coordenada en el Eje Y es la misma para ambos puntos, que es 2. Sin embargo, veamos qué ocurre si aplicamos la ecuación punto-punto calculando previamente la pendiente.

m = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{2 - 2}{-3 - 1}
= \frac{0}{-4}
= 0

Posteriormente aplicamos la ecuación punto-pendiente, escogiendo el punto de nuestra preferencia. Usemos el punto P_1

(y - y_2) = m \cdot (x - x_2)
\Rightarrow \ (y - 2) = 0 \cdot (x - 1)
\Rightarrow \ y - 2 = 0
\Rightarrow \ y = 2

Concluimos entonces que la ecuación de la recta que estamos buscando es y = 2 y para determinar su gráfica, simplemente trazamos una recta por todos los puntos de la forma (x,2).

Anuncios
Anuncios
Anuncios

Ejemplo 2

Calcule la ecuación general de la recta que pasa por los puntos P_1 = (-1,5) y P_2 = (-1,-2).

Podemos abordar este caso notando inmediatamente que la coordenada en el Eje X es la misma para ambos puntos, que es -1. Sin embargo, veamos qué ocurre si aplicamos la ecuación punto-punto.

m = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{-2 - 5}{-1 - (-1)}
= \frac{-7}{0}

Pero la división por cero no está definida, así que debemos considerar la ecuación punto-punto para notar que

\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}
\Rightarrow \ x - x_1 = \frac{y - y_1}{y_2 - y_1} (x_2 - x_1)
\Rightarrow \ (x - (-1)) = \frac{y - 5}{-2 - 5} (-1 - (-1))
\Rightarrow \ x + 1 = \frac{y - 5}{-7} ( 0 )
\Rightarrow \ x + 1 = 0
\Rightarrow \ x = - 1

Concluimos entonces que la ecuación de la recta que estamos buscando es x = -1 y para determinar su gráfica, simplemente trazamos una recta por todos los puntos de la forma (-1,y).


Anuncios
Anuncios
Anuncios

Cómo graficar rectas en el plano cartesiano

Si contamos la ecuación general de una recta, podemos graficarla simplemente calculando los puntos de intersección de esta con los ejes y posteriormente trazar la recta que pasa a través de estos dos. Veamos en los siguientes ejemplos cómo hacer esto.

Ejemplos

Ejemplo 3

Grafique la recta definida por la siguiente ecuación general x + y - 1 = 0.

Para determinar su gráfica, calcularemos los puntos de corte de la recta con los ejes. Entonces,

Si x= 0 \Rightarrow \ (0) + y - 1 = 0
\Rightarrow \ y = 1

Es decir, el punto de corte con el Eje Y es (0,1)

Si y = 0 \Rightarrow \ x + (0) - 1 = 0
\Rightarrow \ x = 1

Es decir, el punto de corte con el Eje X es (1,0)

Anuncios
Anuncios
Anuncios

Ejemplo 4

Grafique la recta definida por la siguiente ecuación general 2x - 3y + 4 = 0

Para determinar su gráfica, calcularemos los puntos de corte de la recta con los ejes. Entonces,

Si x= 0 \Rightarrow \ 2(0) - 3 y + 4 = 0
\Rightarrow \ -3y = -4
\Rightarrow \ y = \frac{-4}{-3}
\Rightarrow \ y = \frac{4}{3}

Es decir, el punto de corte con el Eje Y es \left( 0, \frac{4}{3} \right)

Si y = 0 \Rightarrow \ 2x - 3(0) + 4 = 0
\Rightarrow \ 2x = -4
\Rightarrow \ x = \frac{-4}{2}
\Rightarrow \ x = -2

Es decir, el punto de corte con el Eje X es (-2,0)

Anuncios
Anuncios
Anuncios

Ejemplo 5

Grafique la recta definida por la siguiente ecuación general 5x - y - 1 = 0

Para determinar su gráfica, calcularemos los puntos de corte de la recta con los ejes. Entonces,

Si x= 0 \Rightarrow \ 5(0) - y - 1 = 0
\Rightarrow \ - y = 1
\Rightarrow \ y = - 1

Es decir, el punto de corte con el Eje Y es \left( 0, -1 \right)

Si y = 0 \Rightarrow \ 5x - (0) - 1 = 0
\Rightarrow \ 5x = 1
\Rightarrow \ x = \frac{1}{5}

Es decir, el punto de corte con el Eje X es \left( \frac{1}{5} , 0 \right)


Un comentario en “La Ecuación General de la Recta

¿Tienes alguna duda? Compártela en los comentarios.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.