(me)^2 totumat.com

Memes Matemáticos – Diciembre 2020

La popularidad de un meme refleja la forma en que la sociedad comprende un hecho y las matemáticas no se escapan de esto, pues la comunidad matemática en las redes sociales ha aumentado su presencia en los últimos meses. Llegamos (con vida) al final del infame año 2020 y traemos para ti una compilación de los mejores memes matemáticos de Diciembre 2020.

Anuncios

¿Por qué los matemáticos fallan las pruebas de Coeficiente Intelectual?

Hay situaciones que tienen una solución simple, pero algunas personas sobre dimensionan los problemas. Este es el caso de esta sencilla secuencia numérica, tal como lo expone el usuario u/MostCharmingChicken. En la imagen se puede leer:

Descanso de matemáticas!
1,3,5,7,…
¿Qué número sigue?

217341, porque si
f(x)=\frac{18111}{2} x^4 - 90555 x^3
+ \frac{633885}{2} x^2 - 452773x + 217331
entonces:

f(1)=1
f(2)=3
f(3)=5
f(4)=7
f(5)=217341

Post image

+C

Uno de los memes más repetidos en las matemáticas, es el que nos recuerda que debemos sumar C después de calcular la integrales, esto se debe a que al calcular la integral de una función, estamos calculando toda la familia de antiderivadas. El usuario u/SalazarRED, nos trae este meme (de antaño, memísticamente hablando).

\int aspiri \ dn = aspirin + C

Post image
Anuncios

Nadie puede escribir ξ

Si bien muchos de nosotros sufrimos durante los estudios de educación primaria para que nuestra escritura fuera más que garabatos con tediosas lecciones de caligrafía, pocos son los que en el ámbito de las matemáticas, logran escribir de una forma agradable a la vista, la letra ξ (Xi) del alfabeto griego.

Nueva contraseña
Sgdk178&_2oS
débil

Nueva contraseña
ξ
Fuerte

Post image

La opinión de los demás

Si bien es cierto que ninguna opinión es inválida y todos tienen derecho a expresarse, hay cosas que dice la gente que no tiene sentido alguno. Esto es lo que expone el usuario u/FaGa_44. En la imagen se puede leer

“Debes que respetar la opinión de los demás”

La opinión de los demás

3^3 = 6

Post image
Anuncios

La calculadora de los teléfonos

Si bien hoy en día se pueden encontrar potentes calculadoras navegando en la red o como aplicaciones para los celulares. Las calculadoras nativas de los teléfonos que inicialmente parecen calculadoras bodegueras, su rango de operaciones puede ampliarse cuando se posiciona el teléfono de forma horizontal. Esto es lo que expone el usuario u/officiallyaninja. En la imagen se puede leer:

Las calculadoras en los teléfonos son como

Post image

El cero no es un número natural

Si desean generar una discusión aireada cuando estén hablando con un grupo de matemáticos, pregunten si el cero es un número natural. Si bien, considerar el cero como un número natural puede facilitar con grandiosidad las demostraciones matemáticas, este usualmente no se considera como natural por la forma en que está definido. Esto es lo que expone el usuario u/12_Semitones, asociando esta situación a una escena icónica del universo de Star Wars. En la imagen se puede leer:

Primer Panel

\mathbb{N}

Tú estás en el Concejo de los Enteros, pero no de podemos otorgar el título de Número Natural.

Segundo Panel

0

¿Qué? ¡Esto es indignante! ¡No es justo!

Post image

El principal argumento que se usa para excluir al cero de los números naturales es que los números naturales se usan para contar, y el cero no denota ninguna cantidad. El usuario u/12_Semitones, también hace referencia a esta discusión. En la imagen se puede leer:

En la izquierda de la imagen

Yo

En la derecha de la imagen

Una persona diciendo que cero no es un número porque es la ausencia de una cantidad no es una cantidad.

Post image
Anuncios

Integrar por Partes

Al calcular la integral de una función, uno de los métodos más potentes es el Método de Integración por Partes y en muchas ocasiones ocurre que al aplicar el método, la integral resultante también requiere que se aplique nuevamente el método. Esto es lo que expone el usuario u/Focal-Point1.

Primer Panel

Yo (Moe) integrando por partes (botando a Barney del bar.)

Segundo Panel

Yo (sacudiéndome las manos)

Tercer Panel

Otro método de integración por partes (Barney otra vez en el bar)

Post image

¿Convertir a pi en un racional?

Dividir cualquier número real distinto de cero entre él mismo, da el número uno como resultado. Esto es lo que expone el usuario u/sewingshark. En la imagen se puede leer:

\frac{\pi}{\pi}

\pi: me estás pidiendo que sea racional.

Post image
Anuncios

La derivada de la función exponencial

Al definir las reglas para calcular derivadas, podemos notar que la derivada de la función exponencial \textit{\large e}^x es exactamente ella misma. Sin embargo, al calcular derivadas parciales, la situación puede cambiar pues dependiendo de la variable, esta derivada puede ser igual a cero. Esto es lo que exponen los usuarios u/12_Semitones y u/TheXray02, respectivamente.

Post image
Post image

Llegamos al 2021… ¿Qué puede salir mal?

Hay un dicho que no me gusta porque tiende a desalentar a los estudiantes de matemáticas infundiendo temor sobre el cálculo de integrales, pero lo citaré para presentar el contexto de este meme, dice así: “deriva el que sabe, integra el que puede”. Si bien es mero prejuicio contra las hermosas integrales, este meme que presenta el usuario u/12_Semitones lo resume todo pues nos muestra como cambiar ligeramente la función que estamos integrando, puede complicar nuestros cálculos.

Post image

¿Crees que se nos escapó un meme? ¡Comparte tu mejor meme en los comentarios!

(me)^2 totumat.com

Memes Matemáticos – Noviembre 2020

La popularidad de un meme refleja la forma en que la sociedad comprende un hecho y las matemáticas no se escapan de esto, pues la comunidad matemática en las redes sociales ha aumentado su presencia en los últimos meses. Ha finalizado el mes de Noviembre del infame año 2020 y traemos para ti una compilación de los mejores memes matemáticos.

Anuncios

VERDAD + DIOS = VIDA

La ecuación “VERDAD + DIOS = VIDA” devela una curiosa realidad cuando se aplican las reglas de despeje tal como lo expone u/Karun_Singh. En la imagen se puede leer:

VI A ALGUIEN CON UNA CAMISETA QUE DICE:

VERDAD + DIOS = VIDA

ESPERO QUE SE SE HAYAN DADO CUENTA QUE DE AHÍ SIGUE…

VERDAD = VIDA – DIOS
DIOS = VIDA – VERDAD

SERIAMENTE, SAQUEN LAS CUENTAS, GENTE.

No es un primo ni un número compuesto

Hemos visto que los números naturales primos son aquellos que son divisibles únicamente por ellos mismos y el número 1; más aún, aquellos números naturales que no son primos se llaman compuestos, pues se pueden descomponer en factores primos. El número 1 no es ni un número primo ni un número compuesto. Eso es lo que expone u/ethannnnnnnnnnnnnn, en la imagen se puede leer:

1 a los números primos:

Yo guío a otros a tesoros que no puedo poseer.

Anuncios

¿Épsilon menor o igual que cero?

En el principio de este año 2020 se viralizó una broma en la que se invadiría el Área 51, muchos de los memes hacían alusión a las cosas misteriosas que se encontrarían dentro de ella. Ya estamos finalizando el año 2020 y aún se viralizan los memes sobre el Área 51.

Generalmente las demostraciones que se hacen en el Análisis Matemático requieren acotar conjuntos, para esto se considera un número tan pequeño como se requiera y se expresa como \varepsilon > 0. Es por eso que resulta extraño encontrar un \varepsilon \leq 0. Eso es lo que expone u/yonatanmx. en la imagen se puede leer:

Yo, huyendo del Área 51 con un épsilon menor o igual que cero.

Talla 2A

Al estudiar las ecuaciones cuadráticas, se define una fórmula que permite calcular las soluciones de estas y esta expresa en su denominador la expresión 2a. A esto hace referencia la usuaria de twitter @velosarahptorr pero además a la talla de brasier, en el tweet se puede leer:

La fórmula cuadrática sería como:

Anuncios

¡TRIVIAL!

Los autores de libros avanzados en matemáticas tienden a ahorrar tiempo de lectura a los que acuden a sus libros simplificando largas demostraciones con frases como “la demostración se deja al lector”, sin embargo, la palabra más genera recuerdos a los matemáticos es “trivial”. El usuario u/Tornado547, titula la siguiente imagen con lo que en realidad pensamos cuando usamos esta palabra

Cuando no tienes ganas de hacer álgebra

When you don’t feel like doing algebra

Dona = Taza

El chiste más repetido cuando se habla de Topología siempre será el de la dona y la taza, aunque esto no los hace menos divertidos. En esta ocasión, u/WorldOfPayne hace referencia a esta famosa escena de la serie The Office, donde se puede leer:

Primer Panel

La corporación necesita que tú identifiques las diferencias entre esta imagen (la de la izquierda, una taza) y esta imagen (la de la derecha, una dona).

Segundo Panel

Topólogo:

Son la misma imagen.

Anuncios

6÷2(1+2)

En este año 2020 se viralizó la operación 6÷2(1+2), aunque ya el año pasado se había viralizado en la forma 8÷2(2+2) y aunque ya hemos explicado el problema con este tipo de expresiones. Los físicos proponen una salida rápida tal como la que expone u/succjaw, donde se puede leer:

Problema Viral Matemático

6÷2(1+2)=

Matemáticos:

¿ES LA RESPUESTA 1 O 9? ¡NO PUEDO RESPONDERLO!

Físicos

Sólo toma el promedio. Es 5.

Dividir en la calculadora

Las calculadoras son herramientas potentes, sin embargo, si no sabemos usarlas nos podemos topar con situaciones como estas. Es por esto que de forma irónica se elogia el resultado que es inútil para nuestro propósito.

851 \div 351 = \dfrac{851}{351}

Anuncios

¿Así que te gustan las ecuaciones con dibujitos?

Hay gente siente adversidad hacia las matemáticas pero estas se pueden adaptar para que estas sean más agradables a la vista. ¿Puedes calcular la solución de esos dos problemas matemáticos? Normalmente estas imágenes vienen acompañadas con un texto que dice cosas como “sólo para genios”, pero en el caso de la segunda imagen, pienso que el texto “98% de la gente no puede resolver esto 😂” es un porcentaje muy generoso para la población en general.

98% de la gente no puede resolver esto 😂


¿Crees que se nos escapó un meme? ¡Comparte tu mejor meme en los comentarios!

Las mejores calculadoras online | totumat.com review

Las mejores calculadoras online en 2020

Cuando se estudian asignaturas que requieren de cálculos complicados, nada mejor que contar con una buena calculadora. Si bien tener una calculadora en físico resulta muy cómodo, no siempre se cuenta con acceso a ellas, es por esto que debemos recurrir a opciones online, ya sean surfeando en la web o como aplicaciones para el teléfono.

Mi recomendación para mis alumnos es que siempre estudien acompañados de una calculadora, para que verifiquen si están haciendo correctamente los cálculos necesarios.

Veamos entonces, una lista sin un orden particular (falso, están ordenadas desde la mejor hasta la peor) de las mejores calculadoras que podemos conseguir navegando por internet o en la tienda de aplicaciones de distintos sistemas operativos.

Anuncios

Wolfram Alpha

Sin duda alguna, Wolfran Alpha es el rey de las calculadoras online pues sus cálculos no se basan únicamente en algoritmos tal como lo hacen las calculadoras tradicionales, si no en algoritmos innovadores, base de conocimientos y tecnología de inteligencia artificial.

Nota: De acuerdo con Atlassian, una base de conocimientos es una biblioteca en línea de autoservicio de información sobre un producto, servicio, departamento o tema. Los datos de su base de conocimientos pueden provenir de cualquier lugar. Por lo general, los colaboradores que están bien versados en los temas relevantes agregan y amplían la base de conocimientos.

Al efectuar un cálculo en Wolfram Alpha, no sólo se provee la solución del mismo sino que además, provee información adicional que usualmente se necesita cuando se efectúan cálculos. Se puede ver el desarrollo completo paso a paso para llegar al resultado final pagando una subscripción, pero no es obligatorio si sólo queremos resultados.

Wolfram Alpha | totumat.com review

Wolfram Alpha está disponible gratuitamente en wolframalpha.com y pagando, en iOS, Android y Microsoft.

Anuncios

Calculator N+

Mi calculadora de uso diario es la aplicación para Android Calculator N+. Es una calculadora open source, desarrollada por Trần Lê Duy que según su perfil de github, es un estudiante de la escuela secundaria Nguyen Binh Khiem que ama estudiar algoritmos.

Nota: open source comúnmente se refiere al software que utiliza un proceso de desarrollo abierto y tiene licencia para incluir el código fuente.

Esta calculadora provee resultados únicamente, sin procedimientos, pero la cantidad de funciones que se pueden aplicar es inmensa. Creo que el único defecto que tiene (por ahora), es que no tiene un buscador de funciones en la calculadora de la pantalla de inicio.

Además de la calculadora de la pantalla de inicio, esta aplicación cuenta con calculadoras específicas para trabajar con Ecuaciones, Derivadas, Integrales y Matrices, entre otras; esto es lo que amplía su versatilidad y comodidad.

Calculator N+ | totumat.com review
Calculator N+ | totumat.com review
Calculator N+ | totumat.com review

Calculator N+ está disponible únicamente para Android, sin embargo, al ser open source, puede ser construida desde su código siguiendo las instrucciones en GitHub.

Anuncios

GeoGebra

GeoGebra es una plataforma multifuncional de apoyo didáctico que merece un artículo entero para poder exponer todo lo que ofrece, sin embargo, en esta ocasión sólo nos enfocaremos en la calculadora que provee.

El fuerte de GeoGebra radica en las representaciones gráficas de Funciones, Ecuaciones e Inecuaciones, o de forma general, la interacción entre dos variables (aunque su aplicación para gráficos en 3D generaliza estos aspectos), sin embargo, también permite el cálculo de derivadas e integrales.

Las representaciones gráficas se pueden pueden personalizar para ilustrar con claridad cuáles son los elementos involucrados en los cálculos que se están efectuando.

GeoGebra | totumat.com review

Toda la gama de aplicaciones que provee GeoGebra está disponible en GeoGebra.com, iOS y Android.

Anuncios

Mathway

Mathway es una calculadora con una interfaz sencilla pero muy versátil a la hora de hacer cálculos, pues al igual que Wolfram Alpha, se basa en algoritmos innovadores e inteligencia artificial.

Si bien se pueden utilizar los botones de la aplicación para efectuar los cálculos, se puede indicar las instrucción (en inglés o español) y posteriormente obtener los resultados.

Mathway | totumat.com review
Mathway | totumat.com review
Mathway | totumat.com review

Al igual que Wolfram Alpha, se puede ver el desarrollo completo paso a paso para llegar al resultado final pagando una subscripción, pero no es obligatorio si sólo queremos resultados.

Mathway está disponible en Mathway.com, iOS y Android.

Anuncios

Symbolab

Symbolab es el hijo de Wolfram Alpha y Mathway, jaja, pues provee funcionalidades parecidas a ambas calculadoras y su interfaz también una mezcla de ambas (pero con más publicidad), sin embargo, es igual cómoda de usar.

Symbolab | totumat.com review

Al igual que Wolfram Alpha, se puede ver el desarrollo completo paso a paso para llegar al resultado final pagando una subscripción, pero no es obligatorio si sólo queremos resultados.

Symbolab está disponible en symbolab.com, iOS y Android.


Radicales

Al definir las potencias, encontramos una forma de denotar el producto de un número multiplicado por él mismo reiteradas veces. De esta forma tenemos que

  • Al considerar el número nueve, tres es un número tal que al multiplicarlo por él mismo, el resultado es exactamente nueve, es decir,
    3^2 = 9.
  • Al considerar el número cuatro, dos es un número tal que al multiplicarlo por él mismo, el resultado es exactamente cuatro, es decir,
    4^2 = 36.
  • Al considerar el número sesenta y cuatro, ocho es un número tal que al multiplicarlo por él mismo, el resultado es exactamente sesenta y cuatro, es decir,
    8^2 = 64.

Esta idea es bastante intuitiva pero, ¿y si consideramos el número dos? ¿Cuál el número tal que al multiplicarlo por sí mismo, el resultado es exactamente dos? ¿Será uno? ¿Dos? ¿Uno y un medio? ¿Uno y un cuarto? Los números número enteros o fracciones de enteros en los que podemos pensar no aportarán ninguna solución. Es por esto que recurrimos a un nuevo número que satisface esta condición, lo llamaremos es la raíz cuadrada de dos y usamos la notación de radical (\sqrt{ \ \ }) para denotarlo de la siguiente manera

Aunque no sepamos exactamente toda la extensión decimal de este número sabemos que, por definición, es un número tal que al multiplicarlo por él mismo, el resultado es exactamente dos, es decir, \left( \sqrt{2} \right)^2 = 2. Esta notación se puede extender para otros números en los que se presente la misma situación.

  • Al considerar el número cinco, la raíz cuadrada de cinco es un número tal que al multiplicarlo por él mismo, el resultado es exactamente cinco, es decir,
    \left( \sqrt{5} \right)^2 = 5.
  • Al considerar el número doce, la raíz cuadrada de doce es un número tal que al multiplicarlo por él mismo, el resultado es exactamente doce, es decir,
    \left( \sqrt{12} \right)^2 = 12.
  • Al considerar el número treinta, la raíz cuadrada de treinta es un número tal que al multiplicarlo por él mismo, el resultado es exactamente treinta, es decir,
    \left( \sqrt{30} \right)^2 = 30.
  • Al considerar el número uno, la raíz cuadrada de uno es un número tal que al multiplicarlo por él mismo, el resultado es exactamente uno, es decir,
    \left( \sqrt{1} \right)^2 = 1.
    En este caso, notemos que \sqrt{1} = 1.
  • Al considerar el número menos tres, podemos decir de forma general que la raíz cuadrada de un número negativo no está definida pues no existe un número que multiplicado por sí mismo sea un número negativo.

Muy bien, ahora, ¿cuál el número tal que al multiplicarlo por sí mismo tres veces, el resultado es exactamente dos? A este número lo llamaremos es la raíz cúbica de dos y usamos la notación de radical (\sqrt{ \ \ }) con el índice tres para denotarlo de la siguiente manera

Aunque no sepamos exactamente toda la extensión decimal de este número sabemos que, por definición, es un número tal que al multiplicarlo por él mismo tres veces, el resultado es exactamente dos, es decir, \left( \sqrt[3]{2} \right)^3 = 2. Esta notación se puede extender para otros números en los que se presente la misma situación.

  • Al considerar el número siete, la raíz cúbica de siete es un número tal que al multiplicarlo por él mismo tres veces, el resultado es exactamente siete, es decir,
    \left( \sqrt[3]{7} \right)^{3} = 7.
  • Al considerar el número quince, la raíz cúbica de quince es un número tal que al multiplicarlo por él mismo tres veces, el resultado es exactamente quince, es decir,
    \left( \sqrt[3]{15} \right)^{3} = 15.
  • Al considerar el número menos uno, la raíz cúbica de menos uno es un número tal que al multiplicarlo por él mismo tres veces, el resultado es exactamente menos uno, es decir,
    \left( \sqrt[3]{-1} \right)^{3} = -1.
    En este caso, notemos que \sqrt[3]{-1} = -1.
  • Al considerar el número menos veinticuatro, la raíz cúbica de menos veinticuatro es un número tal que al multiplicarlo por él mismo tres veces, el resultado es exactamente menos veinticuatro, es decir,
    \left( \sqrt[3]{-24} \right)^{3} = -24.

Los radicales se pueden usar para expresar números que cumplen con este tipo de condiciones. De forma general podemos decir que si consideramos un número a y n un número entero mayor que uno, entonces definimos la raíz n-ésima de a como un número tal que al multiplicarlo por sí mismo n veces, el resultado es exactamente a, usamos la notación de radical (\sqrt{ \ \ }) con el índice n para denotarlo de la siguiente manera

Considerando que si n es un número par, la raíz n-ésima de a está definida sólo si a \geq 0. De esta forma, tenemos que

  • Al considerar el número ocho, la raíz sexta de ocho es un número tal que al multiplicarlo por él mismo seis veces, el resultado es exactamente ocho, es decir,
    \left( \sqrt[6]{8} \right)^{6} = 8.
  • Al considerar el número menos diez, la raíz quinta de menos diez es un número tal que al multiplicarlo por él mismo cinco veces, el resultado es exactamente menos diez, es decir,
    \left( \sqrt[5]{-10} \right)^{5} = -10.
  • Al considerar el número trece, la raíz vigésima de trece es un número tal que al multiplicarlo por él mismo veinte veces, el resultado es exactamente trece, es decir,
    \left( \sqrt[20]{13} \right)^{20} = 13.

La Ecuación General de la Recta

Al aplicar la ecuación punto-punto debemos considerar dos casos particulares para los puntos P_1 = (x_1,y_1) y P_2 = (x_2,y_2), veamos que pasa si se cumple solo uno de los siguientes casos:

  • Si y_2 = y_1 , entonces la pendiente m queda expresada de la forma \frac{0}{r}, donde r es un número real distinto de cero.
  • Si x_2 = x_1 , entonces la pendiente m queda expresada de la forma \frac{r}{0}, donde r es un número real distinto de cero (recordemos además, que la división por cero no está definida).

Es necesario definir la recta de una forma que nos permita definir estos casos con mayor precisión. Definimos entonces La Ecuación General La Recta como una relación entre dos variables x y y a través de una igualdad, formalmente,

ax + by + c = 0

Donde a, b y c son números reales tal que a y b no son iguales a cero al mismo tiempo. De esta forma, podemos cubrir lo dos casos que hemos expuestos ya que,

  • Si a = 0 , entonces la ecuación general de la recta será de la forma y=r para algún número real r, es decir, todos los puntos de esta recta tendrán la misma coordenada en el Eje Y, más aún, su gráfica será una recta totalmente horizontal.
  • Si b = 0 , entonces la ecuación general de la recta será de la forma x=r para algún número real r, es decir, todos los puntos de esta recta tendrán la misma coordenada en el Eje X, más aún, su gráfica será una recta totalmente vertical.

Consideremos dos ejemplos que ilustren precisamente estos dos casos.

Anuncios

Ejemplos

Ejemplo 1

Calcule la ecuación de la recta que pasa por los puntos P_1 = (1,2) y P_2 = (-3,2).

Podemos abordar este caso notando inmediatamente que la coordenada en el Eje Y es la misma para ambos puntos, que es 2. Sin embargo, veamos qué ocurre si aplicamos la ecuación punto-punto calculando previamente la pendiente.

m = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{2 - 2}{-3 - 1}
= \frac{0}{-4}
= 0

Posteriormente aplicamos la ecuación punto-pendiente, escogiendo el punto de nuestra preferencia. Usemos el punto P_1

(y - y_2) = m \cdot (x - x_2)
\Rightarrow \ (y - 2) = 0 \cdot (x - 1)
\Rightarrow \ y - 2 = 0
\Rightarrow \ y = 2

Concluimos entonces que la ecuación de la recta que estamos buscando es y = 2 y para determinar su gráfica, simplemente trazamos una recta por todos los puntos de la forma (x,2).

Ejemplo 2

Calcule la ecuación de la recta que pasa por los puntos P_1 = (-1,5) y P_2 = (-1,-2).

Podemos abordar este caso notando inmediatamente que la coordenada en el Eje X es la misma para ambos puntos, que es -1. Sin embargo, veamos qué ocurre si aplicamos la ecuación punto-punto.

m = \frac{y_2 - y_1}{x_2 - x_1}
= \frac{-2 - 5}{-1 - (-1)}
= \frac{-7}{0}

Pero la división por cero no está definida, así que debemos considerar la ecuación punto-punto para notar que

\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}
\Rightarrow \ x - x_1 = \frac{y - y_1}{y_2 - y_1} (x_2 - x_1)
\Rightarrow \ (x - (-1)) = \frac{y - 5}{-2 - 5} (-1 - (-1))
\Rightarrow \ x + 1 = \frac{y - 5}{-7} ( 0 )
\Rightarrow \ x + 1 = 0
\Rightarrow \ x = - 1

Concluimos entonces que la ecuación de la recta que estamos buscando es x = -1 y para determinar su gráfica, simplemente trazamos una recta por todos los puntos de la forma (-1,y).


Anuncios

¿Cómo graficar rectas?

Si contamos la ecuación general de una recta, podemos graficarla simplemente calculando los puntos de intersección de esta con los ejes y posteriormente se traza la recta que pasa por estos dos. Veamos en los siguientes ejemplos como hacer esto.

Ejemplos

Ejemplo 3

Grafique la recta definida por la siguiente ecuación general x + y - 1 = 0.

Para determinar su gráfica, calcularemos los puntos de corte de la recta con los ejes. Entonces,

Si x= 0 \Rightarrow \ (0) + y - 1 = 0
\Rightarrow \ y = 1

Es decir, el punto de corte con el Eje Y es (0,1)

Si y = 0 \Rightarrow \ x + (0) - 1 = 0
\Rightarrow \ x = 1

Es decir, el punto de corte con el Eje X es (1,0)

Ejemplo 4

Grafique la recta definida por la siguiente ecuación general 2x - 3y + 4 = 0

Para determinar su gráfica, calcularemos los puntos de corte de la recta con los ejes. Entonces,

Si x= 0 \Rightarrow \ 2(0) - 3 y + 4 = 0
\Rightarrow \ -3y = -4
\Rightarrow \ y = \frac{-4}{-3}
\Rightarrow \ y = \frac{4}{3}

Es decir, el punto de corte con el Eje Y es \left( 0, \frac{4}{3} \right)

Si y = 0 \Rightarrow \ 2x - 3(0) + 4 = 0
\Rightarrow \ 2x = -4
\Rightarrow \ x = \frac{-4}{2}
\Rightarrow \ x = -2

Es decir, el punto de corte con el Eje X es (-2,0)

Anuncios

Ejemplo 5

Grafique la recta definida por la siguiente ecuación general 5x - y - 1 = 0

Para determinar su gráfica, calcularemos los puntos de corte de la recta con los ejes. Entonces,

Si x= 0 \Rightarrow \ 5(0) - y - 1 = 0
\Rightarrow \ - y = 1
\Rightarrow \ y = - 1

Es decir, el punto de corte con el Eje Y es \left( 0, -1 \right)

Si y = 0 \Rightarrow \ 5x - (0) - 1 = 0
\Rightarrow \ 5x = 1
\Rightarrow \ x = \frac{1}{5}

Es decir, el punto de corte con el Eje X es \left( \frac{1}{5} , 0 \right)