Análisis de Equilibrio de la Utilidad

Suponga que usted inició un negocio fabricando y vendiendo tapabocas. Habiendo estudiando los costos y los ingresos generados, ¿qué tanto ha valido la pena este negocio? Es decir, una vez que ha hecho una inversión, ¿ha generado dinero adicional o tiene menos dinero del que tenía antes de iniciar el negocio?

Anuncios

Una vez que se ha vendido una unidad de un artículo, debemos estudiar la cantidad de dinero que se ha ganado una vez que hemos descontado los costos de producción, a esta ganancia se le conoce como utilidad y de forma general, la ganancia generada por la producción y venta de todas las unidades de un artículo se conoce como utilidad total, esta se calcula restando los costos totales de los ingresos totales. Formalmente, si identificamos los ingresos totales con la variable I, los costos totales con la variable C y la utilidad total con la variable I, entonces podemos definir la siguiente ecuación:

U = I - C

A partir de la Ley de Tricotomía de los números reales, podemos estudiando esta ecuación para analizar el equilibrio entre los ingresos y los costos estableciendo tres casos:

  • Si U < 0, esto quiere decir que los costos totales de producción exceden los ingresos totales obtenidos por las ventas, en este caso decimos que existe una pérdida.
  • Si U > 0, esto quiere decir que los ingresos totales obtenidos por las ventas exceden los costos totales de producción, en este caso decimos que existe una ganancia, aunque también podemos decir que existe una utilidad.
  • Si U = 0, esto quiere decir que los ingresos totales obtenidos por las ventas son iguales a los costos totales de producción, en este caso decimos que existe un equilibrio.

Si consideramos el plano cartesiano, ubicando la cantidad de unidades del artículo (q) en el eje horizontal y la cantidad de dinero (p) en el eje vertical; establecemos una interpretación gráfica de estos casos señalando que existe una pérdida cuando la curva de costos está por encima de la curva de ingresos, existe una ganancia cuando la curva de ingresos están por encima de la curva de costos y particularmente al punto donde ambas curvas se cortan, lo llamamos punto de equilibrio de la utilidad.

Análisis de Equilibrio de la Utilidad | totumat.com

El área roja representa la región de pérdida, es decir, cuando la utilidad es negativa y el área azul representa la región de ganancia, es decir, cuando la utilidad es positiva.

Veamos en los siguientes ejemplos, cómo analizar el equilibrio de las utilidades calculando el punto de equilibrio una vez que ya contamos con las ecuaciones lineales de costos totales e ingresos totales.

Anuncios

Ejemplos

Ejemplo 1

Considerando la ecuación lineal de costos totales p = \frac{3}{10}q +40 y la ecuación lineal de ingresos totales p = \frac{6}{5}q, calcule el punto de equilibrio de la utilidad e indique cual es la cantidad mínima de unidades que debe ser vendida para obtener una ganancia.

Para calcular el punto de equilibrio de la utilidad debemos igualar las expresiones que definen ambas rectas y luego despejamos la variable q.

\frac{3}{10}q +40 = \frac{6}{5}q
\Rightarrow \ \frac{3}{10}q -\frac{6}{5}q = 0-40
\Rightarrow \ -\frac{9}{10}q = -40
\Rightarrow \ q = \frac{400}{9}

Una vez calculado el valor de q, lo sustituimos en la recta de nuestra preferencia y calculamos el valor de p. Sustituyamos entonces el valor q=\frac{400}{9} en la ecuación de demanda.

p = \ \frac{3}{10} \cdot \left( \frac{400}{9} \right) + 40
= \ \frac{40}{3} + 40
= \ \frac{160}{3}

Por lo tanto, el punto de equilibrio de la utilidad es \left( \frac{400}{9} , \frac{160}{3} \right). Grafiquemos ahora este punto de equilibrio identifiquemos las áreas que definen las pérdidas y las ganancias.

Análisis de Equilibrio de la Utilidad | totumat.com

Ejemplo 2

Considerando la ecuación lineal de costos totales p = 6q +60 y la ecuación lineal de ingresos totales p = 11q, calcule el punto de equilibrio de la utilidad e indique cual es la cantidad mínima de unidades que debe ser vendida para obtener una ganancia.

Para calcular el punto de equilibrio de la utilidad debemos igualar las expresiones que definen ambas rectas y luego despejamos la variable q.

6q +60 = 11q+0
\Rightarrow \ 6q -11q = 0-60
\Rightarrow \ -5q = -60
\Rightarrow \ q = 12

Una vez calculado el valor de q, lo sustituimos en la recta de nuestra preferencia y calculamos el valor de p. Sustituyamos entonces el valor q=12 en la ecuación de demanda.

p = \ 6 \cdot \left( 12 \right) + 60
= \ 72 + 60
= \ 132

Por lo tanto, el punto de equilibrio de la utilidad es \left( 12 , 132 \right). Grafiquemos ahora este punto de equilibrio identifiquemos las áreas que definen las pérdidas y las ganancias.

Análisis de Equilibrio de la Utilidad | totumat.com
Anuncios

Ejemplo 3

Considerando la ecuación lineal de costos totales p = 20q +50 y la ecuación lineal de ingresos totales p = 26q, calcule el punto de equilibrio de la utilidad e indique cual es la cantidad mínima de unidades que debe ser vendida para obtener una ganancia.

Para calcular el punto de equilibrio de la utilidad debemos igualar las expresiones que definen ambas rectas y luego despejamos la variable q.

20q +50 = 26q
\Rightarrow \ 20q -26q = 0-50
\Rightarrow \ -6q = -50
\Rightarrow \ q = \frac{25}{3}

Una vez calculado el valor de q, lo sustituimos en la recta de nuestra preferencia y calculamos el valor de p. Sustituyamos entonces el valor q=\frac{25}{3} en la ecuación de demanda.

p = \ 20 \cdot \left( \frac{25}{3} \right) + 50
= \ \frac{500}{3} + 50
= \ \frac{650}{3}

Por lo tanto, el punto de equilibrio de la utilidad es \left( \frac{25}{3} , \frac{650}{3} \right). Grafiquemos ahora este punto de equilibrio identifiquemos las áreas que definen las pérdidas y las ganancias.

Análisis de Equilibrio de la Utilidad | totumat.com

Ecuación Lineal de Ingresos Totales

Suponga que usted quiere iniciar un negocio fabricando tapabocas para su venta. Una vez que ha fabricado los tapabocas, usted fija el precio de venta de cada tapabocas en 100 Ps. De esta forma, si usted vende un tapabocas, habrá recibido un total de 100 Ps.; si usted vende dos tapabocas, habrá recibido un total de 200 Ps.; si usted vende tres tapabocas, habrá recibido un total de 300 Ps.; y de forma sucesiva, si vende q tapabocas, habrá recibido un total de 100 \cdot q Ps.

Nota: Perolitos (Ps.) es la moneda oficial de totumat.

Anuncios

La cantidad de dinero recibida por la venta de todas las unidades producidas de un artículo se conoce como ingreso total y de forma general, el ingreso se calcula multiplicando el precio por las cantidades vendidas. Formalmente, si identificamos el precio del artículo con la variable p, las cantidades vendidas con la variable q y el ingreso total con la variable I, entonces podemos definir la siguiente ecuación:

I = p \cdot q

Aunque el precio de un artículo puede variar dependiendo de la cantidad que se oferte de esta, podemos estudiar la relación que guardan la cantidad de unidades vendidas de un artículo con el ingreso total y para esto definimos un plano cartesiano cuyos ejes están definidos por el ingreso total, I; y las cantidades producidas del bien, q.

Establecemos una interpretación gráfica de estas relaciones notando que a medida que aumentan las cantidades vendidas, también aumenta el ingreso total. Particularmente, si el precio de un artículo es constante, el ingreso estará representado por una recta.

Ecuación Lineal de Ingresos Totales | totumat.com

A la ecuación de la recta de ingresos totales también se le conoce como la ecuación lineal de ingresos totales. Veamos en los siguientes ejemplos, cómo podemos usar la información sobre el precio un artículo para definir la ecuación lineal de ingresos totales.

Anuncios

Ejemplos

Ejemplo 1

Un productor de harina de trigo, fija el precio de cada cada kilo de harina en 1,2 Ps. ¿Cuál es la ecuación lineal de ingresos totales? ¿Cuál es el ingreso generado al vender 60 kilos?

Considerando que el precio kilo de harina es de 0,70 Ps., podemos expresar la ecuación lineal de ingresos totales de la siguiente forma:

I =1,2 \cdot q

Para determinar el costo de fabricar 60 kilos de harina, debemos considerar la ecuación lineal de ingresos totales y sustituir el valor q=60 en ella, de la siguiente forma

I = 1,2 \cdot (60) = 72

Por lo tanto, el ingreso generado por la venta de 60 kilos de harina es de 72 Ps.

La recta I =1,2 \cdot q es llamada la Ecuación Lineal de Ingresos Totales. Este tipo de ecuaciones siempre tendrá pendiente positiva, su gráfica será una recta creciente y pasa por el punto (60,72).

Ecuación Lineal de Ingresos Totales | totumat.com

Ejemplo 2

Suponga que un agricultor fija el precio de 10 kilos de zanahoria en 115 Ps., y el de 20 kilos de zanahoria en 185 Ps. ¿Cuál es la ecuación lineal de ingresos totales? ¿Cuál es el ingreso generado por la venta 30 kilos?

Debemos considerar que si el ingreso total es de 110 Ps. por la venta de 10 kilos, podemos representar esta información como un punto (I,q) el plano cartesiano donde q=10 y I=110, es decir, el punto (10,110); de igual forma, si el ingreso total es de 220 Ps. por la venta de 20 kilos, podemos representar esta información con el punto (20,220).

De esta forma, si contamos con estos dos puntos, podemos calcular la recta que pasa por ellos usando la ecuación punto-punto. Entonces, si P_1 = (10,115) y P_2 = (20,185) son dos puntos en el plano cartesiano, calculamos el valor de la pendiente,

m = \ \frac{I_2 - I_1}{q_2 - q_1}
= \ \frac{220 - 110}{20 - 10}
= \ \frac{110}{10}
= \ 11

Posteriormente aplicamos la ecuación punto-pendiente, escogiendo el punto de nuestra preferencia. Usemos el punto P_1

(I - I_1) = m \cdot (q - q_1)
\Rightarrow \ (I - 110) = 11 \cdot (q - 10)
\Rightarrow \ I - 110 = 11 \cdot q - 110
\Rightarrow \ I = 11 \cdot q - 110 + 110
\Rightarrow \ I = 11 \cdot q

La recta que pasa por los puntos P_1 y P_2 es llamada la Ecuación Lineal de Ingresos Totales. Este tipo de ecuaciones siempre tendrá pendiente positiva y su gráfica será una recta creciente.

Ecuación Lineal de Ingresos Totales | totumat.com

Para determinar el ingreso por la venta de 30 kilos de zanahoria, debemos considerar la ecuación lineal de ingresos totales y sustituir el valor q=30 en ella, de la siguiente forma

I = 11 \cdot (30) = 330

Por lo tanto, el ingreso de cultivar y cosechar 30 kilos de zanahoria es de 330 Ps.

Anuncios

Ejemplo 3

Suponga que en una fábrica de zapatos fija el precio de venta de 5 pares de zapatos para dama en 130 Ps., y el de 13 pares de zapatos en 338 Ps. ¿Cuál es la ecuación lineal de ingresos totales? ¿Cuál es el ingreso generado por la venta de 10 pares de zapatos?

Debemos considerar que si el ingreso total es de 130 Ps. por la venta de 5 pares, podemos representar esta información como el punto (5,130); de igual forma, si el ingreso total es de 338 Ps. por la venta de 13 pares, podemos representar esta información con el punto (13,338).

De esta forma, si contamos con estos dos puntos, podemos calcular la recta que pasa por ellos usando la \textbf{ecuación punto-punto}. Entonces, si P_1 = (5,130) y P_2 = (13,338) son dos puntos en el plano cartesiano, calculamos el valor de la pendiente,

m = \ \frac{I_2 - I_1}{q_2 - q_1}
= \ \frac{338 - 130}{13 - 5}
= \ \frac{208}{8}
= \ 26

Posteriormente aplicamos la ecuación punto-pendiente, escogiendo el punto de nuestra preferencia. Usemos el punto P_1

(I - I_1) = m \cdot (q - q_1)
\Rightarrow \ (I - 130) = 26 \cdot (q - 5)
\Rightarrow \ I - 130 = 26 \cdot q - 130
\Rightarrow \ I = 26 \cdot q - 130 + 130
\Rightarrow \ I = 26 \cdot q

La recta que pasa por los puntos P_1 y P_2 es llamada la Ecuación Lineal de Ingresos Totales. Este tipo de ecuaciones siempre tendrá pendiente positiva y su gráfica será una recta creciente.

Ecuación Lineal de Ingresos Totales | totumat.com

Para determinar el ingreso generado por la venta de 10 pares de zapatos para dama, debemos considerar la ecuación lineal de ingresos totales y sustituir el valor q=10 en ella, de la siguiente forma

I = 26 \cdot (10) = 260

Por lo tanto, el ingreso generado por la venta de 10 pares de zapatos para dama es de 260 Ps.


Ecuación Lineal de Costos Totales

Suponga que usted quiere iniciar un negocio fabricando tapabocas para su venta. En vista de que estos tapabocas no aparecerán por arte de magia para que usted los venda, debe tomar en cuenta la cantidad de dinero que debe invertir para comprar los materiales necesarios y en tal caso que requiera de la ayuda de alguien, debe pagar a esa persona por sus servicios.

Anuncios

Producir un bien requiere de una inversión de dinero, esta inversión de dinero se conoce como costos de producción y se puede cuantificar a usando modelos matemáticos, pero para esto debemos tener en cuenta que estos se pueden catalogar de dos formas:

  • Costos variables que varían dependiendo principalmente de la cantidad de unidades producidas de dicho bien (nivel de producción) y aunque también pueden depender de otros factores, por ahora nos enfocaremos sólo en el nivel de producción. Usualmente se representan con la variable c_v.
  • Costos fijos que permanecen constantes a través del tiempo, tal como alquiler de locales, salarios de administración, pago de servicios, pago de seguros, etc; y deben pagarse incluso si hay producción o no. Usualmente se representan con la variable c_f.

Considerando esto, definimos costos totales como la suma de los costos variables y los costos fijos. Formalmente, si identificamos los costos totales con la variable c_t o simplemente C, entonces podemos definir la siguiente ecuación:

c_t = c_v + c_f

Si consideramos el caso en el que los costos variables dependen únicamente del nivel de producción, podemos estudiar la relación que guarda la cantidad de unidades producidas de un artículo con los costos totales y para esto definimos un plano cartesiano cuyos ejes están definidos por los costos totales, C; y las cantidades producidas del bien, q.

De forma muy particular, el caso en el que los costos variables son proporcionales al nivel de producción, de forma que si el costo de producir una unidad es de m, entonces los costos variables de producir q unidades están expresados de la siguiente forma:

c_v = m \cdot q

A partir de este hecho y representando los costos fijos con una constante b para establecer una similitud con la forma pendiente-ordenada de la recta, podemos definir los costos totales como una recta, de la siguiente forma:

Costos Totales | totumat.com

Establecemos una interpretación gráfica de estas relaciones notando que a medida que aumentan las cantidades producidas, también aumentan los costos totales.

Costos Totales | totumat.com
Anuncios

Ejemplos

Ejemplo 1

En una fábrica de harina de trigo, el costo de fabricar cada kilo de harina es de 0,3 Ps. y diariamente, los costos fijos de esta empresa son de 40 Ps. ¿Cuál es la ecuación lineal de costos totales? ¿Cuál es el costo de producir 60 kilos?

Nota: Perolitos (Ps.) es la moneda oficial de totumat.

Considerando que el costo de cada kilo de harina es de 0,3 Ps., concluimos que los costos variables están expresados como c_v = 0,3 \cdot q, y además, los costos fijos son de 40 Ps. De esta forma, podemos expresar la ecuación lineal de costos totales de la siguiente forma:

C = 0,3q + 40

Para determinar el costo de fabricar 60 kilos de harina, debemos considerar la ecuación lineal de costos totales y sustituir el valor q=60 en ella, de la siguiente forma

C = 0,3(60) + 40 = 18 + 40 = 58

Por lo tanto, el costo de fabricar 60 kilos de harina es de 58 Ps.

La recta C = 0,3q + 40 es llamada la Ecuación Lineal de Costos Totales. Este tipo de ecuaciones siempre tendrá pendiente positiva, su gráfica será una recta creciente y pasa por el punto (60,58).

Costos Totales | totumat.com

Ejemplo 2

Suponga que para un agricultor, el costo de cultivar y cosechar 10 kilo de zanahoria es de 120 Ps., y el de 20 kilos de zanahoria es de 180 Ps. ¿Cuál es la ecuación lineal de costos totales? ¿Cuál es el costo de cultivar y cosechar 30 kilos?

Debemos considerar que si el costo total es de 120 Ps. para 10 kilos, podemos representar esta información como un punto (C,q) el plano cartesiano donde q=10 y C=120, es decir, el punto (10,120); de igual forma, si el costo total es de 18 Ps. para 20 kilos, podemos representar esta información con el punto (20,180).

De esta forma, si contamos con estos dos puntos, podemos calcular la recta que pasa por ellos usando la ecuación punto-punto. Entonces, si P_1 = (10,120) y P_2 = (20,180) son dos puntos en el plano cartesiano, calculamos el valor de la pendiente,

m = \ \frac{C_2 - C_1}{q_2 - q_1}
= \ \frac{180 - 120}{20 - 10}
= \ \frac{60}{10}
= \ 6

Posteriormente aplicamos la ecuación punto-pendiente, escogiendo el punto de nuestra preferencia. Usemos el punto P_1

(C - C_1) = m \cdot (q - q_1)
\Rightarrow \ (C - 120) = 6 \cdot (q - 10)
\Rightarrow \ C - 120 = 6 \cdot q - 60
\Rightarrow \ C = 6 \cdot q - 60 + 120
\Rightarrow \ C = 6 \cdot q + 60

La recta que pasa por los puntos P_1 y P_2 es llamada la Ecuación Lineal de Costos Totales. Este tipo de ecuaciones siempre tendrá pendiente positiva y su gráfica será una recta creciente.

Costos Totales | totumat.com

Para determinar el costo de cultivar y cosechar 30 kilos de zanahoria, debemos considerar la ecuación lineal de costos totales y sustituir el valor q=30 en ella, de la siguiente forma

C = 6 \cdot (30) + 60 = 180 + 60 = 240

Por lo tanto, el costo de cultivar y cosechar 30 kilos de zanahoria es de 240 Ps.

Anuncios

Ejemplo 3

Suponga que en una fábrica de zapatos, el costo producir 5 pares de zapatos para dama es de 150 Ps., y el de 13 pares de zapatos es de 310 Ps. ¿Cuál es la ecuación lineal de costos totales? ¿Cuál es el costo de producir 10 pares de zapatos?

Debemos considerar que si el costo total es de 150 Ps. para 5 pares, podemos representar esta información como el punto (5,150); de igual forma, si el costo total es de 310 Ps. para 13 pares, podemos representar esta información con el punto (13,310).

De esta forma, si contamos con estos dos puntos, podemos calcular la recta que pasa por ellos usando la \textbf{ecuación punto-punto}. Entonces, si P_1 = (5,150) y P_2 = (13,310) son dos puntos en el plano cartesiano, calculamos el valor de la pendiente,

m = \ \frac{C_2 - C_1}{q_2 - q_1}
= \ \frac{310 - 150}{13 - 5}
= \ \frac{160}{8}
= \ 20

Posteriormente aplicamos la ecuación punto-pendiente, escogiendo el punto de nuestra preferencia. Usemos el punto P_1

(C - C_1) = m \cdot (q - q_1)
\Rightarrow \ (C - 150) = 20 \cdot (q - 5)
\Rightarrow \ C - 150 = 20 \cdot q - 100
\Rightarrow \ C = 20 \cdot q - 100 + 150
\Rightarrow \ C = 20 \cdot q + 50

La recta que pasa por los puntos P_1 y P_2 es llamada la Ecuación Lineal de Costos Totales. Este tipo de ecuaciones siempre tendrá pendiente positiva y su gráfica será una recta creciente.

Costos Totales | totumat.com

Para determinar el costo de producir 10 pares de zapatos para dama, debemos considerar la ecuación lineal de costos totales y sustituir el valor q=10 en ella, de la siguiente forma

C = 20 \cdot (10) + 50 = 20 + 50 = 70

Por lo tanto, el costo de producir 30 pares de zapatos para dama es de 70 Ps.


El punto de equilibrio del mercado

Una vez que hemos estudiado las ecuaciones de demanda y las ecuaciones de oferta, es claro que los productores prefieren vender a un precio alto y los consumidores prefieren comprar a un precio bajo, es por esto que se debe llegar a un consenso entre ambas partes de forma que ninguna de las dos se vea perjudicada.

Recordando que estas ecuaciones definen rectas, podemos, de forma matemática, establecer este consenso definiendo el punto de equilibrio del mercado como el punto de intersección entre ambas rectas. Gráficamente, está interpretado de la siguiente forma:

Punto de Equilibrio | totumat.com

Calculando el punto de equilibrio, es posible fijar el precio de un artículo, de forma que los consumidores demandarán la misma cantidad de unidades que los productores están ofertando. Dicho precio será conocido como el precio de equilibrio y las cantidades serán conocidas como cantidades de equilibrio.

Veamos en los siguientes ejemplos, cómo calcular el punto de equilibrio en una economía simple una vez que ya contamos con las ecuaciones de demanda y oferta.

Anuncios

Ejemplos

Ejemplo 1

Considerando las ecuaciones p = -\frac{5}{9} \cdot q + \frac{215}{9} y p = \frac{5}{3} \cdot q + \frac{10}{3} que describen la demanda y la oferta de zanahorias en una pequeña tienda de verduras de la ciudad. Calcule el punto de equilibrio de este mercado.

Para esto definimos nuestro sistema de ecuaciones lineales para calcular el punto de intersección,

p = -\frac{5}{9} \cdot q + \frac{215}{9}
p = \frac{5}{3} \cdot q + \frac{10}{3}

Igualamos las dos expresiones que definen estas dos rectas, posteriormente despejamos la variable q

-\frac{5}{9} \cdot q + \frac{215}{9} = \frac{5}{3} \cdot q + \frac{10}{3}

\Rightarrow \ -\frac{5}{9} \cdot q - \frac{5}{3} \cdot q = \frac{10}{3} - \frac{215}{9}

\Rightarrow \ -\frac{20}{9} \cdot q = - \frac{185}{9}

\Rightarrow \ q = \frac{ \ - \frac{185}{9} \ }{-\frac{20}{9}}

\Rightarrow \ q = \frac{37}{4}

De esta forma, podemos concluir que la cantidad de equilibrio es q_e = \frac{37}{4} \approx 9,25 y tomando en cuenta que este valor es común en ambas rectas, podemos sustituirlo en las recta de nuestra preferencia para calcular el precio de equilibrio. Sustituyamos el valor q_e = \frac{37}{4} en la ecuación de oferta:

p = \frac{5}{3} \cdot \left( \frac{37}{4} \right) + \frac{10}{3} = \frac{75}{4} \approx 18,75

Por lo tanto, concluimos que el punto de equilibrio del mercado es P_0 = \left( \frac{37}{4}, \frac{75}{4} \right) = (9,25 \ ; \ 18,75) y podemos además, ubicarlo en el plano cartesiano.

Punto de Equilibrio | totumat.com
Anuncios

Ejemplo 2

Considerando las ecuaciones p = -\frac{35}{44} \cdot q + \frac{7795}{44} y p = \frac{7}{8} \cdot q - 5 que describen la demanda y la oferta zapatos para dama en una zapatería. Calcule el punto de equilibrio de este mercado.

Para esto definimos nuestro sistema de ecuaciones lineales para calcular el punto de intersección,

p = -\frac{35}{44} \cdot q + \frac{7795}{44}

p = \frac{7}{8} \cdot q - 5

Igualamos las dos expresiones que definen estas dos rectas, posteriormente despejamos la variable q

-\frac{35}{44} \cdot q + \frac{7795}{44} = \frac{7}{8} \cdot q - 5

\Rightarrow \ -\frac{35}{44} \cdot q - \frac{7}{8} \cdot q = -5 - \frac{7795}{44}

\Rightarrow \ -\frac{147}{88} \cdot q = - \frac{8015}{44}

\Rightarrow \ q = \frac{ \ - \frac{8015}{44} \ }{-\frac{147}{88}}

\Rightarrow \ q = \frac{2290}{21}

De esta forma, podemos concluir que la cantidad de equilibrio es q_e=\frac{2290}{21} \approx 109.04 y tomando en cuenta que este valor es común en ambas rectas, podemos sustituirlo en las recta de nuestra preferencia para calcular el precio de equilibrio. Sustituyamos el valor q_e=\frac{2290}{21} en la ecuación de oferta:

p = \frac{7}{8} \cdot \left( \frac{2290}{21} \right) - 5 = \frac{1085}{12} \approx 90,41

Por lo tanto, concluimos que el punto de equilibrio del mercado es P_0 = \left( \frac{2290}{21} , \frac{1085}{12} \right) y podemos además, ubicarlo en el plano cartesiano.

Punto de Equilibrio | totumat.com

Anuncios

Impuestos Especiales

Como parte de sus políticas económicas, los gobiernos tienden a aplicar impuestos adicionales sobre ciertos artículos con el fin de generar más ingresos, por otra parte, también se dan subsidios a los productores con el fin de que disminuir los precios de ciertos artículos y así los consumidores puedan acceder a dichos artículos con mayor facilidad.

Al estudiar las ecuaciones de demanda y oferta, una vez fijado el precio de un artículo, este precio cuenta con dos interpretaciones dependiendo de cuál de los dos entes involucrados se están estudiando, concretamente, si consideramos (p,q) el punto equilibrio del mercado, entonces

  • Para los consumidores, p denota el precio que pagarán a cambio de q unidades del artículo. Es por esto que en ocasiones se llama precio del demandante y se denota con p_d o por su nombre en inglés consumer price y se denota con p_c.
  • Para los productores, p denota el precio que recibirán a cambio de q unidades del artículo. Es por esto que en ocasiones se llama precio del oferente y se denota con p_o o por su nombre en inglés supplier price y se denota con p_s.

Efecto del impuesto en el equilibrio del mercado

Supongamos que el gobierno impone un impuesto de t Perolitos (Ps.) sobre un determinado artículo. Entonces, los productores de este artículo estarán recibiendo t Ps. menos por cada unidad de dicho artículo, esto en comparación con el precio que los consumidores pagan, es decir, p_o = p_d - t.

Nota: Perolitos (Ps.) es la moneda oficial de totumat.

Entonces, si originalmente p_o = m \cdot q + b es la ecuación de oferta del artículo, entonces, la ecuación de oferta una vez que se ha fijado el impuesto de t Ps. quedará expresada de la forma p_d - t = m \cdot q + b y despejando p_d, obtenemos que

p_d = m \cdot q + b + t

Gráficamente, se está trasladando la curva de oferta original en t unidades hacia arriba en el Eje P, generando así, un nuevo punto de equilibrio de la siguiente forma

Efecto del impuesto en el equilibrio del mercado | totumat.com

Veamos en los siguientes ejemplos, como la imposición de un impuesto afecta el punto de equilibrio del mercado.

Anuncios

Ejemplos

Ejemplo 1

Considerando las ecuaciones p = -\frac{5}{9} \cdot q + \frac{215}{9} y p = \frac{5}{3} \cdot q + \frac{10}{3} que describen la demanda y la oferta de zanahorias en una pequeña tienda de verduras de la ciudad. Calcule el punto de equilibrio de este mercado una vez que se ha fijado un impuesto de 2 Ps. por unidad.

Tomando en cuenta que el precio que se ha fijado un impuesto de 2 Ps. por unidad, entonces tendremos una nueva ecuación de oferta definida por

p - 2 = \frac{5}{3} \cdot q + \frac{10}{3}

\Rightarrow \ p = \frac{5}{3} \cdot q + \frac{10}{3} + 2

\Rightarrow \ p = \frac{5}{3} \cdot q + \frac{16}{3}

Contando con esta nueva ecuación de oferta, definimos nuestro sistema de ecuaciones lineales para calcular el punto de intersección,

p = -\frac{5}{9} \cdot q + \frac{215}{9}

p = \frac{5}{3} \cdot q + \frac{16}{3}

Igualamos las dos expresiones que definen estas dos rectas, posteriormente despejamos la variable q

-\frac{5}{9} \cdot q + \frac{215}{9} = \frac{5}{3} \cdot q + \frac{16}{3}

\Rightarrow \ -\frac{5}{9} \cdot q - \frac{5}{3} \cdot q = \frac{16}{3} - \frac{215}{9}

\Rightarrow \ -\frac{20}{9} \cdot q = - \frac{167}{9}

\Rightarrow \ q = \frac{ \ - \frac{167}{9} \ }{-\frac{20}{9}}

\Rightarrow \ q = \frac{167}{20}

De esta forma, podemos concluir que la cantidad de equilibrio es q_e = \frac{167}{20} \approx 8,35 y tomando en cuenta que este valor es común en ambas rectas, podemos sustituirlo en las recta de nuestra preferencia para calcular el precio de equilibrio. Sustituyamos el valor q_e = \frac{167}{20} en la ecuación de oferta:

p = \frac{5}{3} \cdot \left( \frac{167}{20} \right) + \frac{16}{3} = \frac{77}{4} \approx 19,25

Por lo tanto, concluimos que el punto de equilibrio del mercado es P_0 = \left( \frac{167}{20}, \frac{77}{4} \right) = ( 8,35 \ ; \ 19,25) y podemos además, ubicarlo en el plano cartesiano para comparar ambas ecuaciones de oferta.

Efecto del impuesto en el equilibrio del mercado | totumat.com

La curva de oferta una vez que se impone el impuesto es una traslación de la curva de oferta original en 2 unidades hacia arriba en el Eje P. Este aumento en el precio tiene un impacto en la demanda, pues si consideramos el punto de equilibrio original (9,25 \ ; \ 18,75) con el nuevo punto de equilibrio (8,35 \ ; \ 19,25), notamos que la demanda baja de 9,25 unidades a 8,35 unidades.

Anuncios

Ejemplo 2

Considerando las ecuaciones p = -\frac{35}{44} \cdot q + \frac{7795}{44} y p = \frac{7}{8} \cdot q - 5 que describen la demanda y la oferta de zapatos para dama en una zapatería. Calcule el punto de equilibrio de este mercado una vez que se ha fijado un impuesto de 8 Ps. por unidad.

Tomando en cuenta que el precio que se ha fijado un impuesto de 8 Ps. por unidad, entonces tendremos una nueva ecuación de oferta definida por

p - 8 = \frac{7}{8} \cdot q - 5

\Rightarrow \ p = \frac{7}{8} \cdot q - 5 + 8

\Rightarrow \ p = \frac{7}{8} \cdot q + 3

Contando con esta nueva ecuación de oferta, definimos nuestro sistema de ecuaciones lineales para calcular el punto de intersección,

p = -\frac{35}{44} \cdot q + \frac{7795}{44}

p = \frac{7}{8} \cdot q + 3

Igualamos las dos expresiones que definen estas dos rectas, posteriormente despejamos la variable q

-\frac{35}{44} \cdot q + \frac{7795}{44} = \frac{7}{8} \cdot q + 3

\Rightarrow \ -\frac{35}{44} \cdot q - \frac{7}{8} \cdot q = 3 - \frac{7795}{44}

\Rightarrow \ -\frac{147}{88} \cdot q = - \frac{7663}{44}

\Rightarrow \ q = \frac{ \ - \frac{7663}{44} \ }{-\frac{147}{88}}

\Rightarrow \ q = \frac{15326}{147}

De esta forma, podemos concluir que la cantidad de equilibrio es q_e=\frac{15326}{147} \approx 104,25 y tomando en cuenta que este valor es común en ambas rectas, podemos sustituirlo en las recta de nuestra preferencia para calcular el precio de equilibrio. Sustituyamos el valor q_e=\frac{15326}{147} en la ecuación de oferta:

p = \frac{7}{8} \cdot \left( \frac{15326}{147} \right) + 3 = \frac{7915}{84} \approx 94,22

Por lo tanto, concluimos que el punto de equilibrio del mercado es P_0 = \left( \frac{15326}{147} , \frac{7915}{84} \right) = (104.25 \ ;\ 94,22) y podemos además, ubicarlo en el plano cartesiano.

Efecto del impuesto en el equilibrio del mercado | totumat.com

La curva de oferta una vez que se impone el impuesto es una traslación de la curva de oferta original en 8 unidades hacia arriba en el Eje P. Este aumento en el precio tiene un impacto en la demanda, pues si consideramos el punto de equilibrio original (109,04 \ ; \ 90,41 ) con el nuevo punto de equilibrio (104,25 \ ;\ 94,22), notamos que la demanda baja de 109,04 unidades a 104,25 unidades.


Anuncios

Efecto del subsidio en el equilibrio del mercado

Supongamos que el gobierno otorga un subsidio de s Perolitos (Ps.) a los productores de determinado artículo. Entonces, los productores de este artículo estarán recibiendo s Ps. más por cada unidad de dicho artículo, esto en comparación con el precio que los consumidores pagan, es decir, p_o = p_d + s.

Nota: Perolitos (Ps.) es la moneda oficial de totumat.

Entonces, si originalmente p_o = m \cdot q + b es la ecuación de oferta del artículo, entonces, la ecuación de oferta una vez que se ha otorgado el subsidio de s Ps. quedará expresada de la forma p_d + s = m \cdot q + b y despejando p_d, obtenemos que

p_d = m \cdot q + b - s

Gráficamente, se está trasladando la curva de oferta original en s unidades hacia abajo en el Eje P, generando así, un nuevo punto de equilibrio de la siguiente forma

Efecto del subsidio en el equilibrio del mercado | totumat.com

Veamos en los siguientes ejemplos, cómo otorgar un subsidio afecta el punto de equilibrio del mercado.

Anuncios

Ejemplos

Ejemplo 1

Considerando las ecuaciones p = -\frac{5}{9} \cdot q + \frac{215}{9} y p = \frac{5}{3} \cdot q + \frac{10}{3} que describen la demanda y la oferta de zanahorias en una pequeña tienda de verduras de la ciudad. Calcule el punto de equilibrio de este mercado una vez que se ha otorgado un subsidio de 2 Ps. por unidad.

Tomando en cuenta que el precio que se ha otorgado un subsidio de 2 Ps. por unidad, entonces tendremos una nueva ecuación de oferta definida por

p + 2 = \frac{5}{3} \cdot q + \frac{10}{3}

\Rightarrow \ p = \frac{5}{3} \cdot q + \frac{10}{3} - 2

\Rightarrow \ p = \frac{5}{3} \cdot q + \frac{4}{3}

Contando con esta nueva ecuación de oferta, definimos nuestro sistema de ecuaciones lineales para calcular el punto de intersección,

p = -\frac{5}{9} \cdot q + \frac{215}{9}

p = \frac{5}{3} \cdot q + \frac{4}{3}

Igualamos las dos expresiones que definen estas dos rectas, posteriormente despejamos la variable q

-\frac{5}{9} \cdot q + \frac{215}{9} = \frac{5}{3} \cdot q + \frac{4}{3}

\Rightarrow \ -\frac{5}{9} \cdot q - \frac{5}{3} \cdot q = \frac{4}{3} - \frac{215}{9}

\Rightarrow \ -\frac{20}{9} \cdot q = - \frac{203}{9}

\Rightarrow \ q = \frac{ \ - \frac{203}{9} \ }{-\frac{20}{9}}

\Rightarrow \ q = \frac{203}{20}

\Rightarrow \ q \approx 10,15

De esta forma, podemos concluir que la cantidad de equilibrio es q_e = \frac{203}{20} \approx 10,15 y tomando en cuenta que este valor es común en ambas rectas, podemos sustituirlo en las recta de nuestra preferencia para calcular el precio de equilibrio. Sustituyamos el valor q_e = \frac{203}{20} en la ecuación de oferta:

p = \frac{5}{3} \cdot \left( \frac{203}{20} \right) + \frac{4}{3} = \frac{73}{4} = 18,25

Por lo tanto, concluimos que el punto de equilibrio del mercado es P_0 = \left( \frac{203}{20} , \frac{73}{4} \right) = (10,15 \ ;\ 18,25) y podemos además, ubicarlo en el plano cartesiano para comparar ambas ecuaciones de oferta.

Efecto del subsidio en el equilibrio del mercado | totumat.com

La curva de oferta una vez que se otorga el subsidio es una traslación de la curva de oferta original en 2 unidades hacia abajo en el Eje P. Esta disminución en el precio tiene un impacto en la demanda, pues si consideramos el punto de equilibrio original (9,25 \ ; \ 18,75) con el nuevo punto de equilibrio (10,15 \ ;\ 18,25), notamos que la demanda sube de 9,25 unidades a 10,15 unidades.

Anuncios

Ejemplo 2

Considerando las ecuaciones p = -\frac{35}{44} \cdot q + \frac{7795}{44} y p = \frac{7}{8} \cdot q - 5 que describen la demanda y la oferta de zapatos para dama en una zapatería. Calcule el punto de equilibrio de este mercado una vez que se ha otorgado un subsidio de 8 Ps. por unidad.

Tomando en cuenta que el precio que se ha otorgado un subsidio de 8 Ps. por unidad, entonces tendremos una nueva ecuación de oferta definida por

p + 8 = \frac{7}{8} \cdot q - 5

\Rightarrow \ p = \frac{7}{8} \cdot q - 5 - 8

\Rightarrow \ p = \frac{7}{8} \cdot q - 13

Contando con esta nueva ecuación de oferta, definimos nuestro sistema de ecuaciones lineales para calcular el punto de intersección,

p = -\frac{35}{44} \cdot q + \frac{7795}{44}

p = \frac{7}{8} \cdot q - 13

Igualamos las dos expresiones que definen estas dos rectas, posteriormente despejamos la variable q

-\frac{35}{44} \cdot q + \frac{7795}{44} = \frac{7}{8} \cdot q - 13

\Rightarrow \ -\frac{35}{44} \cdot q - \frac{7}{8} \cdot q = -13 - \frac{7795}{44}

\Rightarrow \ -\frac{147}{88} \cdot q = - \frac{8367}{44}

\Rightarrow \ q = \frac{ \ - \frac{8367}{44} \ }{-\frac{147}{88}}

\Rightarrow \ q = \frac{5578}{49}

De esta forma, podemos concluir que la cantidad de equilibrio es q_e = \frac{5578}{49} \approx 113,83 y tomando en cuenta que este valor es común en ambas rectas, podemos sustituirlo en las recta de nuestra preferencia para calcular el precio de equilibrio. Sustituyamos el valor q_e = \frac{5578}{49} en la ecuación de oferta:

p = \frac{7}{8} \cdot \left( \frac{5578}{49} \right) - 13 = \frac{2425}{28} \approx 86,60

Por lo tanto, concluimos que el punto de equilibrio del mercado es P_0 = \left( \frac{5578}{49} , \frac{2425}{28} \right) = (113,83 \ ;\ 86,60) y podemos además, ubicarlo en el plano cartesiano.

Efecto del subsidio en el equilibrio del mercado | totumat.com

La curva de oferta una vez que se otorga el subsidio es una traslación de la curva de oferta original en 8 unidades hacia abajo en el Eje P. Esta disminución en el precio tiene un impacto en la demanda, pues si consideramos el punto de equilibrio original (109,04 \ ; \ 90,41 ) con el nuevo punto de equilibrio (113,83 \ ;\ 86,60), notamos que la demanda sube de 109,04 unidades a 113,83 unidades.


La Ecuación de Oferta

Suponga que usted es un productor de tomates y provee a un supermercado semanalmente, y ve que un kilo de tomates tiene un precio de 200 Ps, considerando los costos de producción, le parece que este precio es generoso para usted por lo que decide proveer al supermercado con 40 kilos de tomate. La semana siguiente vuelve al supermercado y ve que un kilo de tomates tiene un precio de 100 Ps, considerando que está en la mitad del precio de la semana anterior, usted decide proveer al supermercado con 30 kilos de tomate.

Nota: Perolitos (Ps.) es la moneda oficial de totumat.

También pudiera interesarte

Anuncios

Esta situación se presenta de forma general, pues al considerar el precio de un artículo, los productores proveerán más unidades del artículo cuando el precio es alto y proveerán menos unidades del artículo cuando el precio es bajo, esto se conoce como la oferta de un artículo. Entonces, si bien podemos intuir que la oferta de un artículo aumenta a medida que el precio del artículo aumenta, nuestro propósito será el de determinar la forma cuantificable de esta relación.

Para esto, definimos un plano cartesiano cuyos ejes están definidos por la variable precio, denotada por p y la variable cantidad, denotada por q; para mantener la simplicidad de los modelos, consideraremos una economía simple, es decir, tal que las variables p y q sólo pueden tener valores positivos. De esta forma, nos ubicaremos sólo en el primer cuadrante del plano cartesiano.

Curva de Oferta | totumat.com

Veamos en los siguientes ejemplos, cómo conociendo la oferta y el precio de un artículo en un momento dado, podemos definir rectas que describen de forma general la oferta del artículo.

Anuncios

Ejemplos

Ejemplo 1

Suponga que la oferta semanal de zanahoria una pequeña tienda de verduras de la ciudad es de 10 kilos cuando el precio es de 20 Ps. por kilo, y de 7 kilos cuando el precio es de 15 Ps. por kilo. ¿Cuál es la ecuación general de la recta que define la relación entre el precio y la oferta? ¿Cuál será la cantidad ofertada si fija el precio en 17.5 Ps.?

Debemos considerar que si la oferta es de 10 kilos cuando el precio es de 20 Ps., podemos representar esta información como un punto (p,q) el plano cartesiano donde q=10 y p=20, es decir, el punto (10,20); de igual forma, si la oferta es de 7 kilos cuando el precio es de 15 Ps., podemos representar esta información con el punto (7,15).

De esta forma, si contamos con estos dos puntos, podemos calcular la recta que pasa por estos dos usando la ecuación punto-punto. Entonces, si P_1 = (10,20) y P_2 = (7,15) son dos puntos en el plano cartesiano, calculamos el valor de la pendiente,

m = \ \frac{p_2 - p_1}{q_2 - q_1}
= \ \frac{15 - 20}{7 - 10}
= \ \frac{5}{3}

Posteriormente aplicamos la ecuación punto-pendiente, escogiendo el punto de nuestra preferencia. Usemos el punto P_1

\ (p - p_1) = m \cdot (q - q_1)
\Rightarrow \ (p - 20) = \frac{5}{3} \cdot (q - 10)
\Rightarrow \ p - 20 = \frac{5}{3} \cdot q - \frac{50}{3}
\Rightarrow \ p = \frac{5}{3} \cdot q - \frac{50}{3} + 20
\Rightarrow \ p = \frac{5}{3} \cdot q + \frac{10}{3}

La recta que pasa por los puntos P_1 y P_2 es llamada la Ecuación de oferta de zanahoria. Este tipo de ecuaciones siempre tendrá pendiente positiva y su gráfica será una recta creciente.

Curva de Oferta | totumat.com

Para determinar cual será la cantidad ofertada si se fija el precio en 17.5 Ps. debemos considerar la ecuación de oferta y sustituir el valor p= 17.5 en ella, posteriormente se despeja la variable q, de la siguiente forma

\Rightarrow \ 17.5 = \frac{5}{3} \cdot q + \frac{10}{3}
\Rightarrow \ -\frac{5}{3} \cdot q = -17.5 + \frac{10}{3}
\Rightarrow \ -\frac{5}{3} \cdot q = -\frac{85}{6}
\Rightarrow \ q = \frac{ \ -\frac{85}{6} \ }{ -\frac{5}{3}}
\Rightarrow \ q = \frac{17}{2}
\Rightarrow \ q = 8.5

Por lo tanto, la oferta de zanahoria será de 8,5 kilos semanales si se fija el precio en 17.5 Ps.

Anuncios

Ejemplo 2

Suponga que la oferta mensual de zapatos para dama en una zapatería es de 120 pares cuando el precio es de 100 Ps. por par, y de 80 pares cuando el precio es de 65 Ps. por par. ¿Cuál es la ecuación general de la recta que define la relación entre el precio y la oferta? ¿Cuál será la cantidad ofertada si fija el precio en 90 Ps.?

Debemos considerar que si la oferta es de 120 pares cuando el precio es de 100 Ps., podemos representar esta información con el punto (120,100); de igual forma, si la oferta es de 80 pares cuando el precio es de 65 Ps., podemos representar esta información con el punto (80,65).

De esta forma, si contamos con estos dos puntos, podemos calcular la recta que pasa por estos dos usando la ecuación punto-punto. Entonces, si P_1 = (120,100) y P_2 = (80,65) son dos puntos en el plano cartesiano, calculamos el valor de la pendiente,

m = \ \frac{p_2 - p_1}{q_2 - q_1}
= \ \frac{65 - 100}{80 - 120}
= \ \frac{7}{8}

Posteriormente aplicamos la ecuación punto-pendiente, escogiendo el punto de nuestra preferencia. Usemos el punto P_1

\ (p - p_1) = m \cdot (q - q_1)
\Rightarrow \ (p - 65) = \frac{7}{8} \cdot (q - 80)
\Rightarrow \ p - 65 = \frac{7}{8} \cdot q - 70
\Rightarrow \ p = \frac{7}{8} \cdot q -70 + 65
\Rightarrow \ p = \frac{7}{8} \cdot q - 5

La recta que pasa por los puntos P_1 y P_2 es llamada la Ecuación de oferta de zapatos para dama. Este tipo de ecuaciones siempre tendrá pendiente negativa y su gráfica será una recta decreciente.

Curva de Oferta | totumat.com

Para determinar cuál será la cantidad ofertada si se fija el precio en 90 Ps. debemos considerar la ecuación de oferta y sustituir el valor p = 90 en ella, posteriormente se despeja la variable q, de la siguiente forma

\Rightarrow \ 90 = \frac{7}{8} \cdot q - 5
\Rightarrow \ -\frac{7}{8} \cdot q = -90 - 5
\Rightarrow \ -\frac{7}{8} \cdot q = -95
\Rightarrow \ q = \frac{ \ -95 \ }{-\frac{7}{8}}
\Rightarrow \ q = \frac{760}{7}
\Rightarrow \ q \approx 108.57

Por lo tanto, la oferta de zapatos para damas será de aproximadamente 109 pares mensuales si se fija el precio en 90 Ps.


Debemos notar que en ambos ejemplos, las rectas que definen la oferta tienen pendiente positiva y en consecuencia, son rectas crecientes. Entonces concluimos que de forma general, si m > 0, cualquier ecuación de oferta tiene la forma

p = m \cdot q + b