Ecuación de Demanda | totumat.com

La Ecuación de Demanda

Suponga que usted va al supermercado a comprar víveres semanalmente, y ve que un kilo de tomates tiene un precio de 200 Ps., le parece costoso pero decide llevar un kilo pues los necesita para cocinar. La semana siguiente vuelve al supermercado y ve que un kilo de tomates tiene un precio de 100 Ps, considerando que está en la mitad del precio de la semana anterior, usted decide llevar tres kilos.

Nota: Perolitos (Ps.) es la moneda oficial de totumat.

Esta situación se presenta de forma general, pues al considerar el precio de un artículo, los consumidores comprarán menos unidades del artículo cuando el precio es alto y comprarán más unidades del artículo cuando el precio es bajo, esto se conoce como la demanda de un artículo. Entonces, si bien podemos intuir que la demanda de un artículo disminuye a medida que el precio del artículo aumenta, nuestro propósito será el de determinar la forma cuantificable esta relación.

Para esto, definimos un plano cartesiano cuyos ejes están definidos por la variable precio, denotada por p y la variable cantidad, denotada por q; para mantener la simplicidad de los modelos, consideraremos una economía simple, es decir, tal que las variables p y q sólo pueden tener valores positivos. De esta forma, nos ubicaremos sólo en el primer cuadrante del plano cartesiano.

Curva de Demanda | totumat.com

Veamos en los siguientes ejemplos, cómo conociendo la demanda y el precio de un artículo en un momento determinado, podemos definir rectas que describen de forma general la demanda del artículo.

Anuncios

Ejemplos

Ejemplo 1

Suponga que la demanda diaria de zanahoria en una pequeña tienda de verduras de la ciudad es de 1 kilo cuando el precio es de 20 Ps. por kilo, y de 4 kilos cuando el precio es de 15 Ps. por kilo. ¿Cuál es la ecuación general de la recta que define la relación entre el precio y la demanda? ¿Cuál será la cantidad demandada si fija el precio en 17.5 Ps.?

Debemos considerar que si la demanda es de 1 kilo cuando el precio es de 20 Ps., podemos representar esta información como un punto (p,q) el plano cartesiano donde q=1 y p=20, es decir, el punto (1,20); de igual forma, si la demanda es de 4 kilos cuando el precio es de 15 Ps., podemos representar esta información con el punto (4,15).

De esta forma, si contamos con estos dos puntos, podemos calcular la recta que pasa por estos dos usando la ecuación punto-punto. Entonces, si P_1 = (1,20) y P_2 = (4,15) son dos puntos en el plano cartesiano, calculamos el valor de la pendiente,

m = \ \frac{p_2 - p_1}{q_2 - q_1}
= \ \frac{15 - 20}{4 - 1}
= \ -\frac{5}{3}

Posteriormente aplicamos la ecuación punto-pendiente, escogiendo el punto de nuestra preferencia. Usemos el punto P_1

\ (p - p_1) = m \cdot (q - q_1)
\Rightarrow \ (p - 20) = -\frac{5}{3} \cdot (q - 1)
\Rightarrow \ p - 20 = -\frac{5}{3} \cdot q + \frac{5}{3}
\Rightarrow \ p = -\frac{5}{3} \cdot q + \frac{5}{3} + 20
\Rightarrow \ p = -\frac{5}{3} \cdot q + \frac{65}{3}

La recta que pasa por los puntos P_1 y P_2 es llamada la Ecuación de Demanda de zanahoria. Este tipo de ecuaciones siempre tendrá pendiente negativa y su gráfica será una recta decreciente.

Curva de Demanda | totumat.com

Para determinar cuál será la cantidad demandada si se fija el precio en 17.5 Ps. debemos considerar la ecuación de demanda y sustituir el valor p= 17.5 en ella, posteriormente se despeja la variable q, de la siguiente forma

\Rightarrow \ 17.5 = -\frac{5}{3} \cdot q + \frac{65}{3}
\Rightarrow \ \frac{5}{3} \cdot q = -17.5 + \frac{65}{3}
\Rightarrow \ \frac{5}{3} \cdot q = \frac{25}{6}
\Rightarrow \ q = \frac{ \ \frac{25}{6} \ }{\frac{5}{3}}
\Rightarrow \ q = \frac{5}{2}
\Rightarrow \ q = 2.5

Por lo tanto, la demanda de zanahoria será de 2,5 kilos diarios si se fija el precio en 17.5 Ps.

Anuncios

Ejemplo 2

Suponga que la demanda mensual de zapatos para dama en una zapatería es de 97 pares cuando el precio es de 100 Ps. por par, y de 141 pares cuando el precio es de 65 Ps. por par. ¿Cuál es la ecuación general de la recta que define la relación entre el precio y la demanda? ¿Cuál será la cantidad demandada si fija el precio en 90 Ps.?

Debemos considerar que si la demanda es de 97 pares cuando el precio es de 100 Ps., podemos representar esta información con el punto (97,100); de igual forma, si la demanda es de 141 pares cuando el precio es de 65 Ps., podemos representar esta información con el punto (141,65).

De esta forma, si contamos con estos dos puntos, podemos calcular la recta que pasa por estos dos usando la ecuación punto-punto. Entonces, si P_1 = (97,100) y P_2 = (141,65) son dos puntos en el plano cartesiano, calculamos el valor de la pendiente,

m = \ \frac{p_2 - p_1}{q_2 - q_1}
= \ \frac{65 - 100}{141 - 97}
= \ -\frac{35}{44}

Posteriormente aplicamos la ecuación punto-pendiente, escogiendo el punto de nuestra preferencia. Usemos el punto P_1

\ (p - p_1) = m \cdot (q - q_1)
\Rightarrow \ (p - 65) = -\frac{35}{44} \cdot (q - 141)
\Rightarrow \ p - 65 = -\frac{35}{44} \cdot q + \frac{4935}{44}
\Rightarrow \ p = -\frac{35}{44} \cdot q + \frac{4935}{44} + 65
\Rightarrow \ p = -\frac{35}{44} \cdot q + \frac{7795}{44}

La recta que pasa por los puntos P_1 y P_2 es llamada la Ecuación de Demanda de zapatos para dama. Este tipo de ecuaciones siempre tendrá pendiente negativa y su gráfica será una recta decreciente.

Curva de Demanda | totumat.com

Para determinar cual será la cantidad demandada si se fija el precio en 90 Ps. debemos considerar la ecuación de demanda y sustituir el valor p = 90 en ella, posteriormente se despeja la variable q, de la siguiente forma

\Rightarrow \ 90 = -\frac{35}{44} \cdot q + \frac{7795}{44}
\Rightarrow \ \frac{35}{44} \cdot q = -90 + \frac{7795}{44}
\Rightarrow \ \frac{35}{44} \cdot q = \frac{3835}{44}
\Rightarrow \ q = \frac{ \ \frac{3835}{44} \ }{\frac{35}{44}}
\Rightarrow \ q = \frac{767}{7}
\Rightarrow \ q \approx 109.57

Por lo tanto, la demanda de zapatos para damas será de aproximadamente 110 pares mensuales si se fija el precio en 90 Ps.


Debemos notar que en ambos ejemplos, las rectas que definen la demanda tienen pendiente negativa y en consecuencia, son rectas decrecientes. Entonces concluimos que de forma general, si m > 0, cualquier ecuación de demanda tiene la forma

p = -m \cdot q + b

Un comentario en “La Ecuación de Demanda

¿Tiendes dudas? ¿Requieres más ejemplos? No dudes en escribir.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios .