Curva de Precio a través del tiempo

Ecuaciones Diferenciales – Dinámica del precio de un producto

Considerando las ecuaciones diferenciales ordinarias lineales, particularmente, el caso no-homogéneo con coeficiente constante de la forma

x' + ax = w(t)

Sabemos calcular la solución de este tipo de ecuaciones. Veremos que este tipo de ecuaciones se puede usar para describir la relación entre la oferta y la demanda en una economía.

Anuncios

Suponga que las funciones de demanda y oferta de un producto son las siguientes:

Q_d = a_1 - b_1 P \text{ y } Q_o = - a_2 + b_2 P \text{ donde } a_i,b_i>0

Sabiendo que el equilibrio de mercado se consigue cuando Q_d = Q_o, entonces

a_1 - b_1 P = -a_2 + b_2 P

\Rightarrow -b_1 P -b_2 P = -a_1-a_2

\Rightarrow P(- b_1 - b_2) = -a_1-a_2

\Rightarrow P = \frac{a_1+a_2}{b_1+b_2}

Es decir, si P_e = \frac{a_1+a_2}{b_1+b_2}, entonces el mercado estará en equilibrio. Sin embargo, cuando el precio P se desvía de este valor P_e, la demanda excede la oferta o la oferta excede la demanda.

Consideraremos que el precio en un mercado cambia de acuerdo a las fuerzas relativas de demanda y para simplicidad, supongamos que la tasa de cambio de precios con respecto al tiempo t es proporcional al exceso en la demanda, formalmente tenemos que si Q_d-Q_o es el exceso en la demanda, entonces

P'(t) = m \cdot \big( Q_d(t) - Q_o(t) \big), m>0

Sustituyendo las funciones Q_d y Q_o en esta última ecuación, tenemos

P'(t) = m \cdot \big( Q_d(t) - Q_o(t) \big)

\Rightarrow P'(t) = m \cdot \big( a_1 - b_1 P - ( - a_2 + b_2 P) \big)

\Rightarrow P'(t) = m \cdot ( a_1 - b_1 P + a_2 - b_2 P )

\Rightarrow P'(t) = m a_1 - m b_1 P + m a_2 - m b_2 P

\Rightarrow P'(t) = -m P( b_1 + b_2) + m (a_1 + a_2)

\Rightarrow P'(t) + m ( b_1 + b_2) \cdot P = m (a_1 + a_2)

Esta es una ecuación diferencial ordinaria lineal de primer orden que se puede calcular usando el factor integrante \mu(t) = \textit{\Large e}^{\int m(b_1+b_2)dt} = \textit{\Large e}^{m(b_1+b_2)t}, así, tenemos que

\frac{dP}{dt} + m ( b_1 + b_2) \cdot P = m (a_1 + a_2 )

\Rightarrow \textit{\Large e}^{m(b_1+b_2)t} \frac{dP}{dt} + \textit{\Large e}^{m(b_1+b_2)t} m ( b_1 + b_2) = \textit{\Large e}^{m(b_1+b_2)t} m (a_1 + a_2 )

\Rightarrow \frac{d(\textit{\Large e}^{m(b_1+b_2)t} P)}{dt} = \textit{\Large e}^{m(b_1+b_2)t} m (a_1 + a_2 )

\Rightarrow \int \frac{d(\textit{\Large e}^{m(b_1+b_2)t} P)}{dt} dt = \int \textit{\Large e}^{m(b_1+b_2)t} m (a_1 + a_2 ) dt

\Rightarrow \textit{\Large e}^{m(b_1+b_2)t} P = \frac{m(a_1+a_2)}{m(b_1+b_2)}\textit{\Large e}^{m(b_1+b_2)t} + C

\Rightarrow \textit{\Large e}^{m(b_1+b_2)t} P = P_e \textit{\Large e}^{m(b_1+b_2)t} + C

\Rightarrow P = P_e + C \textit{\Large e}^{-m(b_1+b_2)t}

Si consideremos la condición inicial P(0), entonces tenemos que

P(0) = P_e + C \textit{\Large e}^{-m(b_1+b_2) \cdot 0} = P_e + C \Rightarrow C = P(0) - P_e

Por lo tanto, la solución que estamos buscando viene dada por

P(t) = ( P(0) - P_e) \textit{\Large e}^{-m_0 t} + P_e, \text{ donde } m_0 = m(b_1+b_2)

Notemos ahora que m_0>0, así que si t \rightarrow \infty, entonces P(t) \rightarrow P_e. Es decir, en el largo plazo, el mecanismo del mercado llevará la dinámica del mercado a su punto de equilibrio.


Referencias

Zhang, W.-B. (2005). DIFFERENTIAL EQUATIONS, BIFURCATIONS, AND CHAOS IN ECONOMICS (Vol. 68). World Scientific.

Anuncio publicitario

El punto de equilibrio del mercado

Una vez que hemos estudiado las ecuaciones de demanda y las ecuaciones de oferta, es claro que los productores prefieren vender a un precio alto y los consumidores prefieren comprar a un precio bajo, es por esto que se debe llegar a un consenso entre ambas partes de forma que ninguna de las dos se vea perjudicada.

Recordando que estas ecuaciones definen rectas, podemos, de forma matemática, establecer este consenso definiendo el punto de equilibrio del mercado como el punto de intersección entre ambas rectas. Gráficamente, está interpretado de la siguiente forma:

Punto de Equilibrio | totumat.com

Calculando el punto de equilibrio, es posible fijar el precio de un artículo, de forma que los consumidores demandarán la misma cantidad de unidades que los productores están ofertando. Dicho precio será conocido como el precio de equilibrio y las cantidades serán conocidas como cantidades de equilibrio.

Veamos en los siguientes ejemplos, cómo calcular el punto de equilibrio en una economía simple una vez que ya contamos con las ecuaciones de demanda y oferta.

Anuncios

Ejemplos

Ejemplo 1

Considerando las ecuaciones p = -\frac{5}{9} \cdot q + \frac{215}{9} y p = \frac{5}{3} \cdot q + \frac{10}{3} que describen la demanda y la oferta de zanahorias en una pequeña tienda de verduras de la ciudad. Calcule el punto de equilibrio de este mercado.

Para esto definimos nuestro sistema de ecuaciones lineales para calcular el punto de intersección,

p = -\frac{5}{9} \cdot q + \frac{215}{9}
p = \frac{5}{3} \cdot q + \frac{10}{3}

Igualamos las dos expresiones que definen estas dos rectas, posteriormente despejamos la variable q

-\frac{5}{9} \cdot q + \frac{215}{9} = \frac{5}{3} \cdot q + \frac{10}{3}

\Rightarrow \ -\frac{5}{9} \cdot q - \frac{5}{3} \cdot q = \frac{10}{3} - \frac{215}{9}

\Rightarrow \ -\frac{20}{9} \cdot q = - \frac{185}{9}

\Rightarrow \ q = \frac{ \ - \frac{185}{9} \ }{-\frac{20}{9}}

\Rightarrow \ q = \frac{37}{4}

De esta forma, podemos concluir que la cantidad de equilibrio es q_e = \frac{37}{4} \approx 9,25 y tomando en cuenta que este valor es común en ambas rectas, podemos sustituirlo en las recta de nuestra preferencia para calcular el precio de equilibrio. Sustituyamos el valor q_e = \frac{37}{4} en la ecuación de oferta:

p = \frac{5}{3} \cdot \left( \frac{37}{4} \right) + \frac{10}{3} = \frac{75}{4} \approx 18,75

Por lo tanto, concluimos que el punto de equilibrio del mercado es P_0 = \left( \frac{37}{4}, \frac{75}{4} \right) = (9,25 \ ; \ 18,75) y podemos además, ubicarlo en el plano cartesiano.

Punto de Equilibrio | totumat.com
Anuncios

Ejemplo 2

Considerando las ecuaciones p = -\frac{35}{44} \cdot q + \frac{7795}{44} y p = \frac{7}{8} \cdot q - 5 que describen la demanda y la oferta zapatos para dama en una zapatería. Calcule el punto de equilibrio de este mercado.

Para esto definimos nuestro sistema de ecuaciones lineales para calcular el punto de intersección,

p = -\frac{35}{44} \cdot q + \frac{7795}{44}

p = \frac{7}{8} \cdot q - 5

Igualamos las dos expresiones que definen estas dos rectas, posteriormente despejamos la variable q

-\frac{35}{44} \cdot q + \frac{7795}{44} = \frac{7}{8} \cdot q - 5

\Rightarrow \ -\frac{35}{44} \cdot q - \frac{7}{8} \cdot q = -5 - \frac{7795}{44}

\Rightarrow \ -\frac{147}{88} \cdot q = - \frac{8015}{44}

\Rightarrow \ q = \frac{ \ - \frac{8015}{44} \ }{-\frac{147}{88}}

\Rightarrow \ q = \frac{2290}{21}

De esta forma, podemos concluir que la cantidad de equilibrio es q_e=\frac{2290}{21} \approx 109.04 y tomando en cuenta que este valor es común en ambas rectas, podemos sustituirlo en las recta de nuestra preferencia para calcular el precio de equilibrio. Sustituyamos el valor q_e=\frac{2290}{21} en la ecuación de oferta:

p = \frac{7}{8} \cdot \left( \frac{2290}{21} \right) - 5 = \frac{1085}{12} \approx 90,41

Por lo tanto, concluimos que el punto de equilibrio del mercado es P_0 = \left( \frac{2290}{21} , \frac{1085}{12} \right) y podemos además, ubicarlo en el plano cartesiano.

Punto de Equilibrio | totumat.com

Anuncios

Impuestos Especiales

Como parte de sus políticas económicas, los gobiernos tienden a aplicar impuestos adicionales sobre ciertos artículos con el fin de generar más ingresos, por otra parte, también se dan subsidios a los productores con el fin de que disminuir los precios de ciertos artículos y así los consumidores puedan acceder a dichos artículos con mayor facilidad.

Al estudiar las ecuaciones de demanda y oferta, una vez fijado el precio de un artículo, este precio cuenta con dos interpretaciones dependiendo de cuál de los dos entes involucrados se están estudiando, concretamente, si consideramos (p,q) el punto equilibrio del mercado, entonces

  • Para los consumidores, p denota el precio que pagarán a cambio de q unidades del artículo. Es por esto que en ocasiones se llama precio del demandante y se denota con p_d o por su nombre en inglés consumer price y se denota con p_c.
  • Para los productores, p denota el precio que recibirán a cambio de q unidades del artículo. Es por esto que en ocasiones se llama precio del oferente y se denota con p_o o por su nombre en inglés supplier price y se denota con p_s.

Efecto del impuesto en el equilibrio del mercado

Supongamos que el gobierno impone un impuesto de t Perolitos (Ps.) sobre un determinado artículo. Entonces, los productores de este artículo estarán recibiendo t Ps. menos por cada unidad de dicho artículo, esto en comparación con el precio que los consumidores pagan, es decir, p_o = p_d - t.


Nota: Perolitos (Ps.) es la moneda oficial de totumat.


Entonces, si originalmente p_o = m \cdot q + b es la ecuación de oferta del artículo, entonces, la ecuación de oferta una vez que se ha fijado el impuesto de t Ps. quedará expresada de la forma p_d - t = m \cdot q + b y despejando p_d, obtenemos que

p_d = m \cdot q + b + t

Gráficamente, se está trasladando la curva de oferta original en t unidades hacia arriba en el Eje P, generando así, un nuevo punto de equilibrio de la siguiente forma

Efecto del impuesto en el equilibrio del mercado | totumat.com

Veamos en los siguientes ejemplos, como la imposición de un impuesto afecta el punto de equilibrio del mercado.

Anuncios

Ejemplos

Ejemplo 1

Considerando las ecuaciones p = -\frac{5}{9} \cdot q + \frac{215}{9} y p = \frac{5}{3} \cdot q + \frac{10}{3} que describen la demanda y la oferta de zanahorias en una pequeña tienda de verduras de la ciudad. Calcule el punto de equilibrio de este mercado una vez que se ha fijado un impuesto de 2 Ps. por unidad.

Tomando en cuenta que el precio que se ha fijado un impuesto de 2 Ps. por unidad, entonces tendremos una nueva ecuación de oferta definida por

p - 2 = \frac{5}{3} \cdot q + \frac{10}{3}

\Rightarrow \ p = \frac{5}{3} \cdot q + \frac{10}{3} + 2

\Rightarrow \ p = \frac{5}{3} \cdot q + \frac{16}{3}

Contando con esta nueva ecuación de oferta, definimos nuestro sistema de ecuaciones lineales para calcular el punto de intersección,

p = -\frac{5}{9} \cdot q + \frac{215}{9}

p = \frac{5}{3} \cdot q + \frac{16}{3}

Igualamos las dos expresiones que definen estas dos rectas, posteriormente despejamos la variable q

-\frac{5}{9} \cdot q + \frac{215}{9} = \frac{5}{3} \cdot q + \frac{16}{3}

\Rightarrow \ -\frac{5}{9} \cdot q - \frac{5}{3} \cdot q = \frac{16}{3} - \frac{215}{9}

\Rightarrow \ -\frac{20}{9} \cdot q = - \frac{167}{9}

\Rightarrow \ q = \frac{ \ - \frac{167}{9} \ }{-\frac{20}{9}}

\Rightarrow \ q = \frac{167}{20}

De esta forma, podemos concluir que la cantidad de equilibrio es q_e = \frac{167}{20} \approx 8,35 y tomando en cuenta que este valor es común en ambas rectas, podemos sustituirlo en las recta de nuestra preferencia para calcular el precio de equilibrio. Sustituyamos el valor q_e = \frac{167}{20} en la ecuación de oferta:

p = \frac{5}{3} \cdot \left( \frac{167}{20} \right) + \frac{16}{3} = \frac{77}{4} \approx 19,25

Por lo tanto, concluimos que el punto de equilibrio del mercado es P_0 = \left( \frac{167}{20}, \frac{77}{4} \right) = ( 8,35 \ ; \ 19,25) y podemos además, ubicarlo en el plano cartesiano para comparar ambas ecuaciones de oferta.

Efecto del impuesto en el equilibrio del mercado | totumat.com

La curva de oferta una vez que se impone el impuesto es una traslación de la curva de oferta original en 2 unidades hacia arriba en el Eje P. Este aumento en el precio tiene un impacto en la demanda, pues si consideramos el punto de equilibrio original (9,25 \ ; \ 18,75) con el nuevo punto de equilibrio (8,35 \ ; \ 19,25), notamos que la demanda baja de 9,25 unidades a 8,35 unidades.

Anuncios

Ejemplo 2

Considerando las ecuaciones p = -\frac{35}{44} \cdot q + \frac{7795}{44} y p = \frac{7}{8} \cdot q - 5 que describen la demanda y la oferta de zapatos para dama en una zapatería. Calcule el punto de equilibrio de este mercado una vez que se ha fijado un impuesto de 8 Ps. por unidad.

Tomando en cuenta que el precio que se ha fijado un impuesto de 8 Ps. por unidad, entonces tendremos una nueva ecuación de oferta definida por

p - 8 = \frac{7}{8} \cdot q - 5

\Rightarrow \ p = \frac{7}{8} \cdot q - 5 + 8

\Rightarrow \ p = \frac{7}{8} \cdot q + 3

Contando con esta nueva ecuación de oferta, definimos nuestro sistema de ecuaciones lineales para calcular el punto de intersección,

p = -\frac{35}{44} \cdot q + \frac{7795}{44}

p = \frac{7}{8} \cdot q + 3

Igualamos las dos expresiones que definen estas dos rectas, posteriormente despejamos la variable q

-\frac{35}{44} \cdot q + \frac{7795}{44} = \frac{7}{8} \cdot q + 3

\Rightarrow \ -\frac{35}{44} \cdot q - \frac{7}{8} \cdot q = 3 - \frac{7795}{44}

\Rightarrow \ -\frac{147}{88} \cdot q = - \frac{7663}{44}

\Rightarrow \ q = \frac{ \ - \frac{7663}{44} \ }{-\frac{147}{88}}

\Rightarrow \ q = \frac{15326}{147}

De esta forma, podemos concluir que la cantidad de equilibrio es q_e=\frac{15326}{147} \approx 104,25 y tomando en cuenta que este valor es común en ambas rectas, podemos sustituirlo en las recta de nuestra preferencia para calcular el precio de equilibrio. Sustituyamos el valor q_e=\frac{15326}{147} en la ecuación de oferta:

p = \frac{7}{8} \cdot \left( \frac{15326}{147} \right) + 3 = \frac{7915}{84} \approx 94,22

Por lo tanto, concluimos que el punto de equilibrio del mercado es P_0 = \left( \frac{15326}{147} , \frac{7915}{84} \right) = (104.25 \ ;\ 94,22) y podemos además, ubicarlo en el plano cartesiano.

Efecto del impuesto en el equilibrio del mercado | totumat.com

La curva de oferta una vez que se impone el impuesto es una traslación de la curva de oferta original en 8 unidades hacia arriba en el Eje P. Este aumento en el precio tiene un impacto en la demanda, pues si consideramos el punto de equilibrio original (109,04 \ ; \ 90,41 ) con el nuevo punto de equilibrio (104,25 \ ;\ 94,22), notamos que la demanda baja de 109,04 unidades a 104,25 unidades.


Anuncios

Efecto del subsidio en el equilibrio del mercado

Supongamos que el gobierno otorga un subsidio de s Perolitos (Ps.) a los productores de determinado artículo. Entonces, los productores de este artículo estarán recibiendo s Ps. más por cada unidad de dicho artículo, esto en comparación con el precio que los consumidores pagan, es decir, p_o = p_d + s.


Nota: Perolitos (Ps.) es la moneda oficial de totumat.


Entonces, si originalmente p_o = m \cdot q + b es la ecuación de oferta del artículo, entonces, la ecuación de oferta una vez que se ha otorgado el subsidio de s Ps. quedará expresada de la forma p_d + s = m \cdot q + b y despejando p_d, obtenemos que

p_d = m \cdot q + b - s

Gráficamente, se está trasladando la curva de oferta original en s unidades hacia abajo en el Eje P, generando así, un nuevo punto de equilibrio de la siguiente forma

Efecto del subsidio en el equilibrio del mercado | totumat.com

Veamos en los siguientes ejemplos, cómo otorgar un subsidio afecta el punto de equilibrio del mercado.

Anuncios

Ejemplos

Ejemplo 1

Considerando las ecuaciones p = -\frac{5}{9} \cdot q + \frac{215}{9} y p = \frac{5}{3} \cdot q + \frac{10}{3} que describen la demanda y la oferta de zanahorias en una pequeña tienda de verduras de la ciudad. Calcule el punto de equilibrio de este mercado una vez que se ha otorgado un subsidio de 2 Ps. por unidad.

Tomando en cuenta que el precio que se ha otorgado un subsidio de 2 Ps. por unidad, entonces tendremos una nueva ecuación de oferta definida por

p + 2 = \frac{5}{3} \cdot q + \frac{10}{3}

\Rightarrow \ p = \frac{5}{3} \cdot q + \frac{10}{3} - 2

\Rightarrow \ p = \frac{5}{3} \cdot q + \frac{4}{3}

Contando con esta nueva ecuación de oferta, definimos nuestro sistema de ecuaciones lineales para calcular el punto de intersección,

p = -\frac{5}{9} \cdot q + \frac{215}{9}

p = \frac{5}{3} \cdot q + \frac{4}{3}

Igualamos las dos expresiones que definen estas dos rectas, posteriormente despejamos la variable q

-\frac{5}{9} \cdot q + \frac{215}{9} = \frac{5}{3} \cdot q + \frac{4}{3}

\Rightarrow \ -\frac{5}{9} \cdot q - \frac{5}{3} \cdot q = \frac{4}{3} - \frac{215}{9}

\Rightarrow \ -\frac{20}{9} \cdot q = - \frac{203}{9}

\Rightarrow \ q = \frac{ \ - \frac{203}{9} \ }{-\frac{20}{9}}

\Rightarrow \ q = \frac{203}{20}

\Rightarrow \ q \approx 10,15

De esta forma, podemos concluir que la cantidad de equilibrio es q_e = \frac{203}{20} \approx 10,15 y tomando en cuenta que este valor es común en ambas rectas, podemos sustituirlo en las recta de nuestra preferencia para calcular el precio de equilibrio. Sustituyamos el valor q_e = \frac{203}{20} en la ecuación de oferta:

p = \frac{5}{3} \cdot \left( \frac{203}{20} \right) + \frac{4}{3} = \frac{73}{4} = 18,25

Por lo tanto, concluimos que el punto de equilibrio del mercado es P_0 = \left( \frac{203}{20} , \frac{73}{4} \right) = (10,15 \ ;\ 18,25) y podemos además, ubicarlo en el plano cartesiano para comparar ambas ecuaciones de oferta.

Efecto del subsidio en el equilibrio del mercado | totumat.com

La curva de oferta una vez que se otorga el subsidio es una traslación de la curva de oferta original en 2 unidades hacia abajo en el Eje P. Esta disminución en el precio tiene un impacto en la demanda, pues si consideramos el punto de equilibrio original (9,25 \ ; \ 18,75) con el nuevo punto de equilibrio (10,15 \ ;\ 18,25), notamos que la demanda sube de 9,25 unidades a 10,15 unidades.

Anuncios

Ejemplo 2

Considerando las ecuaciones p = -\frac{35}{44} \cdot q + \frac{7795}{44} y p = \frac{7}{8} \cdot q - 5 que describen la demanda y la oferta de zapatos para dama en una zapatería. Calcule el punto de equilibrio de este mercado una vez que se ha otorgado un subsidio de 8 Ps. por unidad.

Tomando en cuenta que el precio que se ha otorgado un subsidio de 8 Ps. por unidad, entonces tendremos una nueva ecuación de oferta definida por

p + 8 = \frac{7}{8} \cdot q - 5

\Rightarrow \ p = \frac{7}{8} \cdot q - 5 - 8

\Rightarrow \ p = \frac{7}{8} \cdot q - 13

Contando con esta nueva ecuación de oferta, definimos nuestro sistema de ecuaciones lineales para calcular el punto de intersección,

p = -\frac{35}{44} \cdot q + \frac{7795}{44}

p = \frac{7}{8} \cdot q - 13

Igualamos las dos expresiones que definen estas dos rectas, posteriormente despejamos la variable q

-\frac{35}{44} \cdot q + \frac{7795}{44} = \frac{7}{8} \cdot q - 13

\Rightarrow \ -\frac{35}{44} \cdot q - \frac{7}{8} \cdot q = -13 - \frac{7795}{44}

\Rightarrow \ -\frac{147}{88} \cdot q = - \frac{8367}{44}

\Rightarrow \ q = \frac{ \ - \frac{8367}{44} \ }{-\frac{147}{88}}

\Rightarrow \ q = \frac{5578}{49}

De esta forma, podemos concluir que la cantidad de equilibrio es q_e = \frac{5578}{49} \approx 113,83 y tomando en cuenta que este valor es común en ambas rectas, podemos sustituirlo en las recta de nuestra preferencia para calcular el precio de equilibrio. Sustituyamos el valor q_e = \frac{5578}{49} en la ecuación de oferta:

p = \frac{7}{8} \cdot \left( \frac{5578}{49} \right) - 13 = \frac{2425}{28} \approx 86,60

Por lo tanto, concluimos que el punto de equilibrio del mercado es P_0 = \left( \frac{5578}{49} , \frac{2425}{28} \right) = (113,83 \ ;\ 86,60) y podemos además, ubicarlo en el plano cartesiano.

Efecto del subsidio en el equilibrio del mercado | totumat.com

La curva de oferta una vez que se otorga el subsidio es una traslación de la curva de oferta original en 8 unidades hacia abajo en el Eje P. Esta disminución en el precio tiene un impacto en la demanda, pues si consideramos el punto de equilibrio original (109,04 \ ; \ 90,41 ) con el nuevo punto de equilibrio (113,83 \ ;\ 86,60), notamos que la demanda sube de 109,04 unidades a 113,83 unidades.


Ecuación de Demanda | totumat.com

La Ecuación de Demanda

Suponga que usted va al supermercado a comprar víveres semanalmente, y ve que un kilo de tomates tiene un precio de 200 Ps., le parece costoso pero decide llevar un kilo pues los necesita para cocinar. La semana siguiente vuelve al supermercado y ve que un kilo de tomates tiene un precio de 100 Ps, considerando que está en la mitad del precio de la semana anterior, usted decide llevar tres kilos.


Nota: Perolitos (Ps.) es la moneda oficial de totumat.


También pudiera interesarte

Anuncios

Esta situación se presenta de forma general, pues al considerar el precio de un artículo, los consumidores comprarán menos unidades del artículo cuando el precio es alto y comprarán más unidades del artículo cuando el precio es bajo, esto se conoce como la demanda de un artículo. Entonces, si bien podemos intuir que la demanda de un artículo disminuye a medida que el precio del artículo aumenta, nuestro propósito será el de determinar la forma cuantificable esta relación.

Para esto, definimos un plano cartesiano cuyos ejes están definidos por la variable precio, denotada por p y la variable cantidad, denotada por q; para mantener la simplicidad de los modelos, consideraremos una economía simple, es decir, tal que las variables p y q sólo pueden tener valores positivos. De esta forma, nos ubicaremos sólo en el primer cuadrante del plano cartesiano.

Curva de Demanda | totumat.com

Veamos en los siguientes ejemplos, cómo conociendo la demanda y el precio de un artículo en un momento determinado, podemos definir rectas que describen de forma general la demanda del artículo.

Anuncios

Ejemplos

Ejemplo 1

Suponga que la demanda diaria de zanahoria en una pequeña tienda de verduras de la ciudad es de 1 kilo cuando el precio es de 20 Ps. por kilo, y de 4 kilos cuando el precio es de 15 Ps. por kilo. ¿Cuál es la ecuación general de la recta que define la relación entre el precio y la demanda? ¿Cuál será la cantidad demandada si fija el precio en 17.5 Ps.?

Debemos considerar que si la demanda es de 1 kilo cuando el precio es de 20 Ps., podemos representar esta información como un punto (p,q) el plano cartesiano donde q=1 y p=20, es decir, el punto (1,20); de igual forma, si la demanda es de 4 kilos cuando el precio es de 15 Ps., podemos representar esta información con el punto (4,15).

De esta forma, si contamos con estos dos puntos, podemos calcular la recta que pasa por estos dos usando la ecuación punto-punto. Entonces, si P_1 = (1,20) y P_2 = (4,15) son dos puntos en el plano cartesiano, calculamos el valor de la pendiente,

m = \ \frac{p_2 - p_1}{q_2 - q_1}
= \ \frac{15 - 20}{4 - 1}
= \ -\frac{5}{3}

Posteriormente aplicamos la ecuación punto-pendiente, escogiendo el punto de nuestra preferencia. Usemos el punto P_1

\ (p - p_1) = m \cdot (q - q_1)
\Rightarrow \ (p - 20) = -\frac{5}{3} \cdot (q - 1)
\Rightarrow \ p - 20 = -\frac{5}{3} \cdot q + \frac{5}{3}
\Rightarrow \ p = -\frac{5}{3} \cdot q + \frac{5}{3} + 20
\Rightarrow \ p = -\frac{5}{3} \cdot q + \frac{65}{3}

La recta que pasa por los puntos P_1 y P_2 es llamada la Ecuación de Demanda de zanahoria. Este tipo de ecuaciones siempre tendrá pendiente negativa y su gráfica será una recta decreciente.

Curva de Demanda | totumat.com

Para determinar cuál será la cantidad demandada si se fija el precio en 17.5 Ps. debemos considerar la ecuación de demanda y sustituir el valor p= 17.5 en ella, posteriormente se despeja la variable q, de la siguiente forma

\Rightarrow \ 17.5 = -\frac{5}{3} \cdot q + \frac{65}{3}
\Rightarrow \ \frac{5}{3} \cdot q = -17.5 + \frac{65}{3}
\Rightarrow \ \frac{5}{3} \cdot q = \frac{25}{6}
\Rightarrow \ q = \frac{ \ \frac{25}{6} \ }{\frac{5}{3}}
\Rightarrow \ q = \frac{5}{2}
\Rightarrow \ q = 2.5

Por lo tanto, la demanda de zanahoria será de 2,5 kilos diarios si se fija el precio en 17.5 Ps.

Anuncios

Ejemplo 2

Suponga que la demanda mensual de zapatos para dama en una zapatería es de 97 pares cuando el precio es de 100 Ps. por par, y de 141 pares cuando el precio es de 65 Ps. por par. ¿Cuál es la ecuación general de la recta que define la relación entre el precio y la demanda? ¿Cuál será la cantidad demandada si fija el precio en 90 Ps.?

Debemos considerar que si la demanda es de 97 pares cuando el precio es de 100 Ps., podemos representar esta información con el punto (97,100); de igual forma, si la demanda es de 141 pares cuando el precio es de 65 Ps., podemos representar esta información con el punto (141,65).

De esta forma, si contamos con estos dos puntos, podemos calcular la recta que pasa por estos dos usando la ecuación punto-punto. Entonces, si P_1 = (97,100) y P_2 = (141,65) son dos puntos en el plano cartesiano, calculamos el valor de la pendiente,

m = \ \frac{p_2 - p_1}{q_2 - q_1}
= \ \frac{65 - 100}{141 - 97}
= \ -\frac{35}{44}

Posteriormente aplicamos la ecuación punto-pendiente, escogiendo el punto de nuestra preferencia. Usemos el punto P_1

\ (p - p_1) = m \cdot (q - q_1)
\Rightarrow \ (p - 65) = -\frac{35}{44} \cdot (q - 141)
\Rightarrow \ p - 65 = -\frac{35}{44} \cdot q + \frac{4935}{44}
\Rightarrow \ p = -\frac{35}{44} \cdot q + \frac{4935}{44} + 65
\Rightarrow \ p = -\frac{35}{44} \cdot q + \frac{7795}{44}

La recta que pasa por los puntos P_1 y P_2 es llamada la Ecuación de Demanda de zapatos para dama. Este tipo de ecuaciones siempre tendrá pendiente negativa y su gráfica será una recta decreciente.

Curva de Demanda | totumat.com

Para determinar cual será la cantidad demandada si se fija el precio en 90 Ps. debemos considerar la ecuación de demanda y sustituir el valor p = 90 en ella, posteriormente se despeja la variable q, de la siguiente forma

\Rightarrow \ 90 = -\frac{35}{44} \cdot q + \frac{7795}{44}
\Rightarrow \ \frac{35}{44} \cdot q = -90 + \frac{7795}{44}
\Rightarrow \ \frac{35}{44} \cdot q = \frac{3835}{44}
\Rightarrow \ q = \frac{ \ \frac{3835}{44} \ }{\frac{35}{44}}
\Rightarrow \ q = \frac{767}{7}
\Rightarrow \ q \approx 109.57

Por lo tanto, la demanda de zapatos para damas será de aproximadamente 110 pares mensuales si se fija el precio en 90 Ps.


Debemos notar que en ambos ejemplos, las rectas que definen la demanda tienen pendiente negativa y en consecuencia, son rectas decrecientes. Entonces concluimos que de forma general, si m > 0, cualquier ecuación de demanda tiene la forma

p = -m \cdot q + b


Anuncios

Ejercicios propuestos por los usuarios de totumat

Ejercicio 1

¿Me podrían ayudar a resolver el siguiente problema?

El equilibrio de mercado para un producto ocurre cuando se fabrican 13500 unidades a un precio de $45 por unidad, El fabricante no hace oferta de unidades con precio $10 y los consumidores no demandan unidades con precio $200.

  • Obtener la ecuación de demanda si se supone lineal.
  • Determinar el precio por unidad cuando se demandan 5000 unidades.

Gracias,
Mary.

Respuesta:

Lo primero que debemos hacer al abordar problemas de este tipo es identificar cuales son los elementos que se presentan para reescribirlos en lenguaje matemático. Estos son:

  • El punto de equilibrio: (13500,45).
  • El fabricante no ofrece cuando el precio es de $10: Este es el punto (0,10).
  • Los consumidores no demandan cuando el precio es de $200: Este es el punto (0,200).

Como se supone que la demanda es lineal, debemos calcular la ecuación de la recta que pasa por los puntos (0,10) y (13500,45). Para esto aplicamos la ecuación punto-punto:

(p - 200) = \frac{45-200}{13500-0} \cdot (q - 0)

\Rightarrow p - 200 = -\frac{155}{13500} \cdot q

\Rightarrow p = -\frac{155}{13500} \cdot q + 200

Esta última ecuación es la ecuación lineal de demanda y para determinar el precio por unidad cuando se demandan 5000 unidades, basta con sustituir q=5000 en la ecuación, esto es:

p = -\frac{155}{13500} \cdot (5000) + 200 = 142,5926

Ejercicio 2

Hola, ¿me podría ayudar con este ejercicio? Obtengo como resultado

q = p/-2

No sé si estoy resolviéndolo bien.

El enunciado del ejercicio es el siguiente: Cuando el precio de los relojes es de $1000 dólares, no hay demanda alguna; cuando es gratuito en el mercado se demandan 500 relojes; ¿Cuál es la ecuación de la demanda? Grafique y explique; ¿cuál es el precio techo que se puede vender en el mercado?

Muchas gracias.

Respuesta:

Lo primero que debemos hacer al abordar problemas de este tipo es identificar cuales son los elementos que se presentan para reescribirlos en lenguaje matemático. Estos son:

  • Cuando el precio de los relojes es de $1000 dólares, no hay demanda alguna: Este es el punto (0,1000).
  • Cuando es gratuito en el mercado se demandan 500 relojes: Este es el punto (500,0).

Como se supone que la demanda es lineal, debemos calcular la ecuación de la recta que pasa por los puntos (0,1000) y (500,0). Para esto aplicamos la ecuación punto-punto:

(p - 1000) = \frac{0-1000}{500-0} \cdot (q - 0)

\Rightarrow p - 1000 = -\frac{1000}{500} \cdot q

\Rightarrow p = -2 \cdot q + 1000

Posteriormente, podemos hacer un despeje para expresar esta ecuación como q en función de p, para obtener la siguiente ecuación:

q = -\frac{1}{2} \cdot p + 500

Esta última ecuación se puede apreciar gráficamente:

Curva de Demanda | totumat.com