Ejercicios Propuestos de Expresiones Algebraicas

Operaciones Básicas

Simplifique las siguientes expresiones efectuando las operaciones básicas. Recuerde tomar en cuenta la jerarquía entre las operaciones.

  1. 90 + 58 \cdot 13
  2. 54 + 3 \cdot 48
  3. ( 11 + 52) \cdot 13
  4. ( 72 + 19) \cdot 88
  5. 78 + ( 50 + 54) \cdot 72
  6. 5 + ( 73 - 84) \cdot 37
  7. 4^2 + ( 2 + 7) \cdot 4
  8. 2^3 + ( 6 - 3) \cdot 7
  9. 53 + [ 9^3 + ( 4 + 8) \cdot 2 ]
  10. 62 - [ 4^2 + ( 9 + 6) \cdot 6 ]
  11. 7 \cdot [ 4^3 + ( 7 + 1) \cdot 2 ] + 17
  12. 8 \cdot [ 2^2 - ( 1 + 3) \cdot 5 ] - 25
  13. (7^2 + 56 )  \cdot {6 + [ 6^2 + ( 5 + 6) \cdot 7 ] + 24}
  14. (2^2 - 69 )  \cdot {2 + [ 3^2 + ( 7 + 6) \cdot 7 ] - 71}
  15. \dfrac{ 68 + 96 \cdot 61 }{ 49 + 13 \cdot 78 }
  16. \dfrac{ 98 + 10 \cdot 28 }{ 11 - 82 \cdot 73 }
  17. 73 + 84 \cdot \dfrac{ 42 }{ 78 + 29 \cdot 69 }
  18. 8 + 85 \cdot \dfrac{ 1 }{ 11 - 39 \cdot 59 }
  19. \dfrac{ 32 + [ 8^2 + ( 10 + 1) \cdot 6 ] }{ 19 + [ 4^3 + ( 4 + 4) \cdot 5 ] }
  20. \dfrac{ 62 - [ 8^3 + ( 5 + 9) \cdot 2 ] }{ 54 - [ 10^3 - ( 2 + 4) \cdot 7 ] }
  21. 81 + 8^2 + \dfrac{ ( 1 - 8) \cdot 8 ] }{ 6 - [ 8^2 - ( 6 + 4) \cdot 8 ] }
  22. 89 + 7^3 + \dfrac{ ( 4 - 3) \cdot 8 ] }{ 88 - [ 8^3 - ( 7 + 3) \cdot 1 ] }
  23. \dfrac{ (4^3 - 68 )  \cdot {7 + [ 5^3 - ( 1 - 9) \cdot 6 ] + 52} }{ (2^3 - 91 )  \cdot {4 + [ 3^3 - ( 5 - 5) \cdot 10 ] + 19} }
  24. \dfrac{ (10^2 - 37 )  \cdot {10 + [ 9^2 - ( 10 - 4) \cdot 5 ] + 89} }{ (4^2 - 37 )  \cdot {10 + [ 9^3 - ( 4 - 10) \cdot 8 ] + 49} }
  25. (5^3 + 98 )  + \dfrac{ 3\cdot{5 + [ 9^2 + ( 2 + 10) \cdot 9 ] + 20} }{ (9^3 + 48 )  \cdot {2 + [ 6^3 + ( 1 + 4) \cdot 10 ] + 95} }
  26. (3^2 + 42 )  + \dfrac{ 7\cdot{3 + [ 2^3 + ( 1 + 7) \cdot 3 ] + 90} }{ (8^3 + 32 )  \cdot {8 + [ 3^2 + ( 1 + 10) \cdot 9 ] + 82} }

Potencias y Radicales

Simplifique las siguientes expresiones reescribiéndolas como producto de factores primos usando las propiedades de las potencias.

  1. 78
  2. 72
  3. 28 \cdot 30
  4. 24 \cdot 14
  5. 15^2 \cdot 25^5
  6. 16^3 \cdot 14^4
  7. (17 \cdot 25)^5
  8. (16 \cdot 20)^4
  9. (17^{-1} \cdot 25^{14})^5
  10. (16^{-3} \cdot 20^{15})^4
  11. \sqrt[4]{76}
  12. \sqrt[6]{115}
  13. \sqrt{15^2} \cdot \sqrt[3]{25^5}
  14. \sqrt[3]{16^3} \cdot \sqrt[4]{14^4}
  15. \sqrt[3]{27 \cdot 30}
  16. \sqrt[5]{24 \cdot 16}
  17. \dfrac{18}{3}
  18. \dfrac{24}{8}
  19. \dfrac{18^{10}}{3^5}
  20. \dfrac{24^9}{8^6}
  21. \dfrac{12^{-4}}{3^5}
  22. \dfrac{24^{-3}}{8^6}
  23. \dfrac{28 \cdot 30}{24 \cdot 14}
  24. \dfrac{60 \cdot 20}{63 \cdot 96}
  25. \dfrac{(17 \cdot 25)^5}{(16 \cdot 20)^4}
  26. \dfrac{(52 \cdot 21)^3}{(22 \cdot 55)^2}
  27. \dfrac{(17^{-1} \cdot 25^{14})^5}{(16^{-3} \cdot 20^{15})^4}
  28. \dfrac{(52^{-5} \cdot 41^{23})^3}{(22^{-7} \cdot 85^{12})^2}
  29. \dfrac{\sqrt[4]{76}}{\sqrt[6]{115}}
  30. \dfrac{\sqrt[8]{49}}{\sqrt[10]{90}}
  31. \dfrac{\sqrt{15^2} \cdot \sqrt[3]{25^9}}{\sqrt[3]{16^3} \cdot \sqrt[4]{14^4}}
  32. \dfrac{\sqrt[5]{18^4} \cdot \sqrt[6]{20^7}}{\sqrt[8]{22^5} \cdot \sqrt[6]{44^3}}
  33. \dfrac{\sqrt[3]{27 \cdot 30}}{\sqrt[5]{24 \cdot 16}}
  34. \dfrac{\sqrt[7]{62 \cdot 20}}{\sqrt[9]{63 \cdot 98}}

Logaritmos

Simplifique las siguientes expresiones reescribiéndolas usando las propiedades de las potencias y logaritmos.

  1. \log_2\big( 78 \big)
  2. \log_3\big( 72 \big)
  3. \log_7\big( 24 \cdot 14 \big)
  4. \log_8\big( 60 \cdot 20 \big)
  5. \log_{10}\big(  15^2 \cdot 25^5 \big)
  6. \log_{12}\big(  16^3 \cdot 14^4 \big)
  7. \log_2\big(  (17 \cdot 25)^5 \big)
  8. \log_4\big(  (16 \cdot 20)^4 \big)
  9. \log_3\big(  (17^{-1} \cdot 25^{14})^5 \big)
  10. \log_5\big(  (16^{-3} \cdot 20^{15})^4 \big)
  11. \log_2\big(  \sqrt[4]{76} \big)
  12. \log_3\big(  \sqrt[6]{115} \big)
  13. \log_4\big(  \sqrt{15^2} \cdot \sqrt[3]{25^5} \big)
  14. \log_5\big(  \sqrt[3]{16^3} \cdot \sqrt[4]{14^4} \big)
  15. \log_2\big(  \sqrt[3]{27 \cdot 30} \big)
  16. \log_3\big(  \sqrt[5]{24 \cdot 16} \big)
  17. \log_2 \left( \dfrac{18}{3} \right)
  18. \log_3 \left( \dfrac{24}{8} \right)
  19. \log_6 \left( \dfrac{18^{10}}{3^5} \right)
  20. \log_7 \left( \dfrac{24^9}{8^6} \right)
  21. \log_2 \left( \dfrac{12^{-4}}{3^5} \right)
  22. \log_4 \left( \dfrac{24^{-3}}{8^6} \right)
  23. \log_3 \left( \dfrac{28 \cdot 30}{24 \cdot 14} \right)
  24. \log_5 \left( \dfrac{60 \cdot 20}{63 \cdot 96} \right)
  25. \log_2 \left( \dfrac{(17 \cdot 25)^5}{(16 \cdot 20)^4} \right)
  26. \log_5 \left( \dfrac{(52 \cdot 21)^3}{(22 \cdot 55)^2} \right)
  27. \log_9 \left( \dfrac{(17^{-1} \cdot 25^{14})^5}{(16^{-3} \cdot 20^{15})^4} \right)
  28. \log_8 \left( \dfrac{(52^{-5} \cdot 41^{23})^3}{(22^{-7} \cdot 85^{12})^2} \right)
  29. \log_5 \left( \dfrac{\sqrt[4]{76}}{\sqrt[6]{115}} \right)
  30. \log_4 \left( \dfrac{\sqrt[8]{49}}{\sqrt[10]{90}} \right)
  31. \log_3 \left( \dfrac{\sqrt{15^2} \cdot \sqrt[3]{25^9}}{\sqrt[3]{16^3} \cdot \sqrt[4]{14^4}} \right)
  32. \log_6 \left( \dfrac{\sqrt[5]{18^4} \cdot \sqrt[6]{20^7}}{\sqrt[8]{22^5} \cdot \sqrt[6]{44^3}} \right)
  33. \log_4 \left( \dfrac{\sqrt[3]{27 \cdot 30}}{\sqrt[5]{24 \cdot 16}} \right)
  34. \log_8 \left( \dfrac{\sqrt[7]{62 \cdot 20}}{\sqrt[9]{63 \cdot 98}} \right)

Expresiones Algebraicas

Factorice y simplifique las siguientes expresiones algebraicas.

  1. 3x + 3
  2. 10x + 10
  3. 5x + 5 + 5\sqrt[]{5}
  4. 10x + 10 + 10\sqrt[3]{6}
  5. x^2 - 1
  6. x^2 - 4
  7. 10x^2 - 50
  8. 3x^2 - 18
  9. x^4 - 1
  10. x^4 - 16
  11. x^3 - x
  12. x^4 - x^2
  13. x^2 + 5x + 6
  14. x^2 + 6x + 5
  15. x^2 + 5x - 14
  16. x^2 + 4x - 32
  17. 2x^2 + 16x + 24
  18. 3x^2 + 30x + 72
  19. 5x^2 - 15x - 200
  20. 6x^2 - 30x - 216
  21. \dfrac{3x + 3}{3}
  22. \dfrac{10x + 10}{10}
  23. \dfrac{3x + 3}{x+1}
  24. \dfrac{10x + 20}{x+2}
  25. \dfrac{x^2 - 1}{x+1}
  26. \dfrac{x^2 - 4}{x-2}
  27. \dfrac{10x^2 - 50}{10}
  28. \dfrac{3x^2 - 18}{3}
  29. \dfrac{x^4 - 1}{x+1}
  30. \dfrac{x^4 - 16}{x-2}
  31. \dfrac{x^2 + 5x + 6}{x+3}
  32. \dfrac{x^2 + 6x + 5}{x+1}
  33. \dfrac{2x^2 + 16x + 24}{x+2}
  34. \dfrac{3x^2 + 30x + 72}{x+6}
  35. \dfrac{x^2 + 5x - 14}{x^2 + x - 42}
  36. \dfrac{x^2 + 4x - 32}{x^2 + 6x + 16}

Ejercicios Propuestos de Ecuaciones e Inecuaciones

Ecuaciones Lineales

Calcule el valor de x que satisface las siguientes ecuaciones, haciendo paso a paso cada una de las operaciones.

  1. x + 6 = 9
  2. x - 9 = 6
  3. 7x + 1 = 10
  4. 5x - 4 = 5
  5. 2 + 1x = 3
  6. 7 - 6x = 10
  7. 3 + 1x = 8
  8. 2 - 8x = 9
  9. 1 + 1x = 8 + 8x
  10. 2 - 8x = 2 + 2x

Ecuaciones con Valor Absoluto

Calcule los valores de x que satisfacen las siguientes ecuaciones con valor absoluto, haciendo paso a paso cada una de las operaciones.

  1. | x + 9 |  = 7
  2. | x - 9 |  = 4
  3. | 8x + 1 |  = 5
  4. | 5x - 10 |  = 2
  5. | 3 + 5x |  = 7
  6. | 5 - 4x |  = 7
  7. | 7 - 4x |  = 5x
  8. | -7 + 4x |  = -7x
  9. | 3 + 8x |  = 8 + 4x
  10. | 5 - 9x |  = 10 + 10x

Inecuaciones Lineales

Calcule los valores de x que satisfacen las siguientes ecuaciones, expresando la solución gráficamente en la recta real y de forma compresiva como intervalos, haciendo paso a paso cada una de las operaciones.

  1. x + 6 < 5
  2. x + 1 < 7
  3. x - 2 > 4
  4. x - 3 > 8
  5. 11 - x \geq 54
  6. 25 - x \geq 12
  7. 32 - x \leq 71
  8. 41 - x \leq 96
  9. 2x + 6 < 15
  10. 8x + 1 < 27
  11. 32 - 5x \leq -71
  12. 41 - 6x \leq -96
  13. 25 < x + 102 < 300
  14. 45 < x + 65 < 78
  15. 78 \geq x + 45 > -255
  16. 12 \geq x + 20 > -39
  17. 45 < -x + 10 \leq 50
  18. 10 < -x + 2 \leq 21
  19. -78 \geq 2x + 45 \geq -255
  20. -12 \geq 5x + 20 \geq -39
  21. 45 \leq 4 - 3x \leq 50
  22. 10 \leq 5 - 5x \leq 21

Inecuaciones con Valor Abosluto

Calcule los valores de x que satisfacen las siguientes ecuaciones, expresando la solución gráficamente en la recta real y de forma compresiva como intervalos, haciendo paso a paso cada una de las operaciones.

  1. |x + 3| < 8
  2. |x + 2| < 4
  3. |x - 7| > 1+x
  4. |x - 6| > 5-x
  5. |41 - x| \geq x+96
  6. |32 - x| \geq x-71
  7. |25 - x| \leq 12x+4
  8. |11 - x| \leq 54x+3
  9. |6x + 3| < 88+45x
  10. |10x + 2| > 74+13x
  11. |25 - 7x| \leq 12x-12
  12. |11 - 8x| \geq 23x-54

Inecuaciones de grado mayor que dos

Calcule los valores de x que satisfacen las siguientes ecuaciones, expresando la solución gráficamente en la recta real y de forma compresiva como intervalos, haciendo paso a paso cada una de las operaciones. Factorice los polinomios utilizando el método que sea más adecuado.

  1. x \left(x + 9\right) > 0
  2. \left(x - 5\right) \left(x - 1\right) \leq 0
  3. x \left(x - 4\right) \left(x + 4\right) < 0
  4. \left(x - 5\right) \left(x - 3\right) \left(x + 5\right) > 0
  5. \left(x - 4\right) \left(x + 1\right) \left(x + 2\right) \left(x + 5\right) > 0
  6. \left(x - 2\right) \left(x + 7\right) \left(x + 9\right)^{2} \geq 0
  7. x^{2} - 9 x < 0
  8. x^{2} - 5 x + 4 > 0
  9. x^{3} - x^{2} - 20 x < 0
  10. x^{3} - 12 x^{2} - x + 252 \geq 0
  11. x^{4} + x^{3} - 24 x^{2} + 36 x \geq 0
  12. x^{4} - 11 x^{3} - x^{2} + 275 x - 600 \leq 0

Aplicaciones a la Economía

Utilidad

  1. Una charcutería produce carne de res para el cual el costo variable por unidad es de 14 Ps. y el costo fijo de 67782 Ps. Cada unidad tiene un precio de venta de 92 Ps. Determine el número de artículos que deben venderse para obtener una utilidad de 66936 Ps.
  2. Una panadería produce pan canilla para el cual el costo variable por unidad es de 29 Ps. y el costo fijo de 68046 Ps. Cada unidad tiene un precio de venta de 43 Ps. Determine el número de artículos que deben venderse para obtener una utilidad de 50077 Ps.
  3. Una Fábrica de Cerámica produce porcelanato para el cual el costo variable por unidad es de 19 Ps. y el costo fijo de 63023 Ps. Cada unidad tiene un precio de venta de 63 Ps. Determine el número de artículos que deben venderse para obtener una utilidad de 83250 Ps.
  4. Una confitería produce chupetas de cereza para el cual el costo variable por unidad es de 21 Ps. y el costo fijo de 98393 Ps. Cada unidad tiene un precio de venta de 33 Ps. Determine el número de artículos que deben venderse para obtener una utilidad de 90355 Ps.

Precio

  1. Una tienda de deportes produce zapatos para correr y planea vender una nueva gama a las tiendas minoristas. El costo para ellos será de 11 Ps. por unidad. Para mayor comodidad del minorista, la tienda de deportes fijará el precio de cada unidad de zapatos para correr previamente. ¿Qué cantidad debe fijarse de modo que el minorista pueda reducir este precio en un 2% durante una venta y aún obtener una ganancia de 68% sobre el costo?
  2. Una compañía de telefónica produce teléfonos Android y planea vender una nueva gama a las tiendas minoristas. El costo para ellos será de 19 Ps. por unidad. Para mayor comodidad del minorista, la compañía de telefónica fijará el precio de cada unidad de teléfonos Android previamente. ¿Qué cantidad debe fijarse de modo que el minorista pueda reducir este precio en un 5% durante una venta y aún obtener una ganancia de 99% sobre el costo?
  3. Una tienda de electrodomésticos produce licuadoras y planea vender una nueva gama a las tiendas minoristas. El costo para ellos será de 36 Ps. por unidad. Para mayor comodidad del minorista, la tienda de electrodomésticos fijará el precio de cada unidad de licuadoras previamente. ¿Qué cantidad debe fijarse de modo que el minorista pueda reducir este precio en un 27% durante una venta y aún obtener una ganancia de 78% sobre el costo?
  4. Una confitería produce caramelos de anís y planea vender una nueva gama a las tiendas minoristas. El costo para ellos será de 31 Ps. por unidad. Para mayor comodidad del minorista, la confitería fijará el precio de cada unidad de caramelos de anís previamente. ¿Qué cantidad debe fijarse de modo que el minorista pueda reducir este precio en un 33% durante una venta y aún obtener una ganancia de 51% sobre el costo?

Inversión

  1. Se invirtió un total de 14205 en acciones de dos compañías, A y B. Al final del primer año, A y B tuvieron rendimientos de 10% y 2%, respectivamente, sobre las inversiones originales. ¿Cuál fue la cantidad original asignada a cada empresa, si la utilidad total fue de 486 Ps.?
  2. Se invirtió un total de 34120 en acciones de dos compañías, A y B. Al final del primer año, A y B tuvieron rendimientos de 10% y 9%, respectivamente, sobre las inversiones originales. ¿Cuál fue la cantidad original asignada a cada empresa, si la utilidad total fue de 321 Ps.?
  3. Se invirtió un total de 28526 en acciones de dos compañías, A y B. Al final del primer año, A y B tuvieron rendimientos de 3% y 6%, respectivamente, sobre las inversiones originales. ¿Cuál fue la cantidad original asignada a cada empresa, si la utilidad total fue de 801 Ps.?
  4. Se invirtió un total de 30472 en acciones de dos compañías, A y B. Al final del primer año, A y B tuvieron rendimientos de 6% y 1%, respectivamente, sobre las inversiones originales. ¿Cuál fue la cantidad original asignada a cada empresa, si la utilidad total fue de 155 Ps.?

Ejercicios Propuestos de Rectas

Sean P_1=(0,5), P_2=(-2,0), P_3=(5,1), P_4=(-6,2), P_5=(4,-8), P_6=(-1,-7), P_7=(1,9) y P_8=(-6,-3) puntos del plano cartesiano.

Ecuación Punto-Pendiente

Calcule la ecuación general de la recta que pasa por el punto indicado y tiene pendiente m; grafíquela.

  1. P_1 y m=2, llámela l_1.
  2. P_2 y m=2, llámela l_2.
  3. P_3 y m=2, llámela l_3.
  4. P_4 y m=2, llámela l_4.
  5. P_5 y m=-\frac{1}{2}, llámela l_5.
  6. P_6 y m=-\frac{1}{2}, llámela l_6.
  7. P_7 y m=-\frac{1}{2}, llámela l_7.
  8. P_8 y m=-\frac{1}{2}, llámela l_8.
  9. P_8 y m=3, llámela l_9.
  10. P_7 y m=4, llámela l_{10}.
  11. P_6 y m=5, llámela l_{11}.
  12. P_5 y m=6, llámela l_{12}.
  13. P_4 y m=-\frac{1}{9}, llámela l_{13}.
  14. P_3 y m=-\frac{2}{8}, llámela l_{14}.
  15. P_2 y m=-\frac{3}{7}, llámela l_{15}.
  16. P_1 y m=-\frac{4}{6}, llámela l_{16}.

Punto de Intersección

Basado en los resultados del ejercicio anterior. Verifique si las siguientes rectas son paralelas o no. En caso de intersectarse, verifique si son perpendiculares, calcule el punto de intersección y grafíquelo.

  1. l_1 y l_2
  2. l_3 y l_4
  3. l_5 y l_6
  4. l_7 y l_8
  5. l_9 y l_{10}
  6. l_{11} y l_{12}
  7. l_{13} y l_{14}
  8. l_{15} y l_{16}
  9. l_1 y l_5
  10. l_2 y l_6
  11. l_3 y l_7
  12. l_4 y l_8
  13. l_9 y l_{13}
  14. l_{10} y l_{14}
  15. l_{11} y l_{15}
  16. l_{12} y l_{16}

Paralelismo y Perpendicularidad

Basado en los resultados del ejercicio anterior. Calcule la ecuación general de la recta que cumple con las condiciones dadas y grafíquela.

  1. Pasa por P_1, es paralela a l_5
  2. Pasa por P_2, es paralela a l_6
  3. Pasa por P_3, es paralela a l_7
  4. Pasa por P_4, es paralela a l_8
  5. Pasa por P_5, es paralela a l_9
  6. Pasa por P_6, es paralela a l_{10}
  7. Pasa por P_7, es paralela a l_{11}
  8. Pasa por P_8, es paralela a l_{12}
  9. Pasa por P_1, es perpendicular a l_{13}
  10. Pasa por P_2, es perpendicular a l_{14}
  11. Pasa por P_3, es perpendicular a l_{15}
  12. Pasa por P_4, es perpendicular a l_{16}
  13. Pasa por P_5, es perpendicular a l_{1}
  14. Pasa por P_6, es perpendicular a l_{2}
  15. Pasa por P_7, es perpendicular a l_{3}
  16. Pasa por P_8, es perpendicular a l_{4}

Ecuación Punto-Punto

Calcule la ecuación general de la recta que pasa por los siguientes puntos y grafíquela.

  1. P_1 y P_2, llámela l_1.
  2. P_2 y P_3, llámela l_2.
  3. P_3 y P_4, llámela l_3.
  4. P_4 y P_5, llámela l_4.
  5. P_5 y P_6, llámela l_5.
  6. P_6 y P_7, llámela l_6.
  7. P_8 y P_9, llámela l_7.
  8. P_9 y P_{10}, llámela l_8.
  9. P_1 y P_3, llámela l_9.
  10. P_2 y P_4, llámela l_{10}.
  11. P_5 y P_7, llámela l_{11}.
  12. P_6 y P_8, llámela l_{12}.
  13. P_1 y P_5, llámela l_{13}.
  14. P_2 y P_6, llámela l_{14}.
  15. P_3 y P_7, llámela l_{15}.
  16. P_4 y P_8, llámela l_{16}.

Punto de Intersección

Basado en los resultados del ejercicio anterior. Verifique si las siguientes rectas son paralelas o no. En caso de intersectarse, verifique si son perpendiculares, calcule el punto de intersección y grafíquelo.

  1. l_1 y l_2
  2. l_3 y l_4
  3. l_5 y l_6
  4. l_7 y l_8
  5. l_9 y l_{10}
  6. l_{11} y l_{12}
  7. l_{13} y l_{14}
  8. l_{15} y l_{16}
  9. l_1 y l_3
  10. l_2 y l_4
  11. l_5 y l_7
  12. l_6 y l_8
  13. l_9 y l_{11}
  14. l_{10} y l_{12}
  15. l_{13} y l_{15}
  16. l_{14} y l_{16}