Las funciones elementales

En las matemáticas, existen funciones muy particulares que sientan la base para definir otras funciones más complejas, a este conjunto de funciones se les llama Funciones Elementales. Veamos entonces cada una de estas, definiendo su dominio más grande y su rango. Además, veremos la representación gráfica de éstas en el plano cartesiano.

Identificaremos visualmente el dominio de una función trazando rectas verticales imaginarias por todo el plano cartesiano, diremos que un punto está en el dominio si una recta corta a la curva que define la función f y al Eje X al mismo tiempo.

De igual forma identificaremos visualmente el rango de una función trazando rectas horizontales imaginarias por todo el plano cartesiano, diremos que un punto está en el rango si una recta corta a la función f y al Eje Y al mismo tiempo.

Empezaremos estudiando todas las funciones que se pueden expresar de forma general como f(x) = x^q, con q \in \mathbb{Q}. A este tipo de funciones las llamaremos Funciones Algebraicas.

Funciones Algebraicas

Función Identidad

Definimos la función identidad como una regla que corresponde a cada número real con él mismo, es decir, que identifica a cada número real. Formalmente, la definimos como

f: \mathbb{R} \rightarrow \mathbb{R}, \ f(x)=x

Dom(f) = \mathbb{R}

Rgo(f) = \mathbb{R}

En ocasiones denotaremos esta función con la letra I, de la siguiente forma I(x)=x.

Función Cuadrática

También se conoce como parábola y corresponde a cada número real con él mismo pero elevado al cuadrado. Formalmente, la definimos como

f: \mathbb{R} \rightarrow \mathbb{R}, \ f(x)=x^2

Dom(f) = \mathbb{R}

Rgo(f) = [0,+\infty]

En general, cualquier función de la forma f(x)=x^n con n par, tendrá la misma forma, salvo que mientras más grande sea el valor de n, más rápido crecerá la función para los valores de x tales que |x|>1 y más lento crecerá para los valores de x tales que |x|<1.

Función Cúbica

Corresponde a cada número real con él mismo pero elevado al cubo. Formalmente, la definimos como

f: \mathbb{R} \rightarrow \mathbb{R}, \ f(x)=x^3

Dom(f) = \mathbb{R}

Rgo(f) = \mathbb{R}

En general, cualquier función de la forma f(x)=x^n con n impar, tendrá la misma forma, salvo que mientras más grande sea el valor de n, más rápido crecerá la función para los valores de x tales que |x|>1 y más lento crecerá para los valores de x tales que |x|<1.

Función de proporcionalidad inversa

Esta función también se conoce como hipérbola y corresponde a cada número real con la x-ésima parte de 1, imagine que usted tiene una torta y desea repartirla toda entre x personas, entonces le da a cada persona un pedazo de tamaño \frac{1}{x}. Mientras mayor sea la cantidad de personas, más pequeño es el pedazo que le corresponde a cada una y mientras menor sea la cantidad de personas, más grande es el pedazo que le corresponde a cada una. Formalmente, la definimos como

f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}, \ f(x)=\frac{1}{x}

Dom(f) = \mathbb{R}-{0}

Rgo(f) = \mathbb{R}-{0}

Notemos que por más grande que sea el valor de x, la función nunca es igual a cero por lo tanto nunca corta al Eje X. De igual forma por más pequeño que sea el valor de x la función nunca es igual a infinito por lo tanto la función nunca corta al Eje Y.

En general, cualquier función de la forma f(x)=\frac{1}{x^n} con n impar, tendrá la misma forma, salvo que mientras más grande sea el valor de n, más rápido decrecerá la función para los valores de x tales que |x|>1 y más rápido crecerá para los valores de x tales que |x|<1.

Hay que destacar otra función íntimamente relacionada con la función de proporcionalidad inversa, y es que si elevamos ésta al cuadrado, obtendremos la función \frac{1}{x^2}, es muy parecida a la función \frac{1}{x}, salvo que esta es positiva cuando los valores de x son negativos y además. Formalmente, la definimos como

f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}, \ f(x)=\frac{1}{x^2}

Dom(f) = \mathbb{R}-{0}

Rgo(f) = (0,\infty)

Notemos que por más grande que sea el valor de x, la función nunca es igual a cero por lo tanto nunca corta al Eje X. De igual forma por más pequeño que sea el valor de x la función nunca es igual a infinito por lo tanto la función nunca corta al Eje Y.

En general, cualquier función de la forma f(x)=\frac{1}{x^n} con n par, tendrá la misma forma, salvo que mientras más grande sea el valor de n, más rápido decrecerá la función para los valores de x tales que |x|>1 y más rápido crecerá para los valores de x tales que |x|<1.

Función Raíz Cuadrada

La raíz cuadrada de un número x se define como un número que multiplicado por él mismo es igual a x y se denota por \sqrt{x}. Notemos que no tiene sentido definir la raíz cuadrada de un número negativo pues no existe un número que multiplicado por él mismo sea negativo. Formalmente, definimos esta función como

f: [0,+\infty] \rightarrow [0,+\infty], \ f(x)=\sqrt{x}

Dom(f) = [0,+\infty)

Rgo(f) = [0,+\infty)

En general, cualquier función de la forma f(x)=\sqrt[n]{x} con n par, tendrá la misma forma, salvo que mientras más grande sea el valor de n, más lento crecerá la función para los valores de x tales que |x|>1 y más rápido crecerá para los valores de x tales que |x|<1.

Función Raíz Cúbica

La raíz cúbica de un número x se define como un número que multiplicado tres veces por él mismo es igual a x y se denota por \sqrt[3]{x}. Contrario a la raíz cuadrada, en este caso sí tiene sentido definir la raíz cúbica de un número negativo. Formalmente, definimos esta función como

f: [0,+\infty] \rightarrow [0,+\infty], \ f(x)=\sqrt{x}

Dom(f) = \mathbb{R}

Rgo(f) = \mathbb{R}

En general, cualquier función de la forma f(x)=\sqrt[n]{x} con n impar, tendrá la misma forma, salvo que mientras más grande sea el valor de n, más lento crecerá la función para los valores de x tales que |x|>1 y más rápido crecerá para los valores de x tales que |x|<1.

2 comentarios sobre “Las funciones elementales

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s