Límites

  1. El límite de la función cuadrática cuando x tiende a 2
  2. Definición de Límite
    1. Ejemplos
      1. Ejemplo 1
      2. Ejemplo 2
      3. Ejemplo 3
      4. Ejemplo 4
      5. Ejemplo 5

Al definir las funciones elementales, pudimos hacer un estudio general de ellas en todo su dominio cuando vimos sus gráficas. Haremos ahora un estudio local de éstas, y para esto las estudiaremos en intervalos «muy pequeños».

También pudiera interesarte

El límite de la función cuadrática cuando x tiende a 2

Para entender esta idea, consideremos las función f(x)=x^2, consideremos el intervalo (1,3) que está centrado en x_0=2, notamos que el conjunto de las imágenes en este intervalo quedan encerradas en el intervalo (1,9).

Si consideramos un intervalo contenido en el intervalo (1,3) y centrado en x=2, veremos que las imágenes de este nuevo intervalo estarán también contenidas en el intervalo (1,9). Podemos hacer este mismo procedimiento reiteradas veces encajando intervalos de la siguiente manera:

Entonces, podemos pensar en lo siguiente: Si en el Eje X estamos encerrando a 2, ¿a quién estamos encerrando en el Eje Y? Intuitivamente, podemos pensar que estamos encerrando a 4 pues 2^2 = 4 y efectivamente es así. Haciendo este estudio de la función, podemos formalizarlo como el límite de la función x^2 cuando x tiende a 2 es igual a 4 y se representa así

\lim_{x \to 2} x^2 = 4

Definición de Límite

De forma general, considerando una función f(x), diremos que el límite de f(x) cuando x tiende a x_0 es igual a un número L es el estudio del comportamiento de f(x) para valores de x muy cercanos a x_0 (cercanos, no iguales), concluyendo que el conjunto de las imágenes de estos valores de x están muy cercanos a L. Formalmente se representa así

\displaystyle \lim_{x \to x_0} f(x) = L

Se interpreta matemáticamente de la siguiente forma:

Para todo número \epsilon > 0 , existe un número \delta > 0 tal que si
0 < |x-x_0| < \delta entonces |f(x) - L| < \epsilon

También podemos decir que f(x) tiende a L cuando x tiende a x_0. Nuestro propósito será el de determinar los valores a los que tiende la función y esto es tan sencillo como evaluar la función en el punto dado.

Para facilitar el cálculo de límites es importante destacar que al calcular el límite de operaciones entre funciones, podremos separarlas de la siguiente manera: Si f(x) y g(x) son dos funciones cuyos límites son L y M de forma respectiva cuando x tiende a x_0; y a es un número real, entonces

  • \lim_{x \to x_0} a = a
  • \lim_{x \to x_0} a \cdot f(x) = a \cdot L
  • \lim_{x \to x_0} ( f(x) \pm g(x) ) = L \pm M
  • \lim_{x \to x_0} ( f(x) \cdot g(x) ) = L \cdot M
  • \lim_{x \to x_0} \frac{f(x)}{g(x)} = \dfrac{L}{M} \text{ si } g(x) \neq, M \neq 0

veamos algunos ejemplos sobre como determinar los límites en algunas funciones elementales para entender con mayor claridad esta idea.



Ejemplos

Ejemplo 1

Calcule el límite de la función f(x)=x+3 cuando x tiende a 4.

\lim_{x \to 4} x+3 = 4 + 3 = 7

Esto quiere decir que para los valores de x muy cercanos a 4, las imágenes de la función f(x)=x+3 se acercan a 7. Gráficamente, tenemos que

Ejemplo 2

Calcule el límite de la función f(x)=\sqrt{x+7}-4 cuando x tiende a -3.

\lim_{x \to -3} \sqrt{x+7}-4 = \sqrt{-3+7}-4 = \sqrt{4}-4 = 2-4 =-2

Esto quiere decir que para los valores de x muy cercanos a -3, las imágenes de la función f(x)=\sqrt{x+7}-4 se acercan a -2. Gráficamente, tenemos que

Ejemplo 3

Calcule el límite de la función f(x)=\frac{1}{x-2}+1 cuando x tiende a 5.

\lim_{x \to 5} \frac{1}{x-2}+1 = \frac{1}{5-2}+1 = \frac{1}{3}+1 = \frac{4}{3}

Esto quiere decir que para los valores de x muy cercanos a 5, las imágenes de la función f(x)=\frac{1}{x-2}+1 se acercan a \frac{4}{3}. Gráficamente, tenemos que

Ejemplo 4

También hay funciones cuya gráfica no conocemos pero de las que podemos calcular su límite, usando la misma técnica. Calcule el límite de la función f(x)=\text{\large e}^{x^2 - 1} + x cuando x tiende a 1.

\lim_{x \to 1} \text{\large e}^{x^2 - 1} + x = \text{\large e}^{1^2 - 1} + 1 = \text{\large e}^{1 - 1} + 1 = \text{\large e}^{0} + 1 = 1 +1 = 2

Ejemplo 5

Calcule el límite de la función f(x)= x^2 + 5x + 6 cuando x tiende a -2.

\lim_{x \to -2} x^2 + 5x + 6 = (-2)^2 + 5(-2) + 6 = 4 - 10 + 6 = 0


meme: un perrito etiquetado con "lim" juntando dos perritos de juguete uno está etiquetado con "x" y otro con "x_0". | totumat.com

Funciones Inyectivas, Sobreyectivas y Biyectivas

  1. Función Inyectiva
    1. Ejemplos
      1. Ejemplo 1: Función inyectiva
    2. Ejemplos
      1. Ejemplo 2: Función inyectiva
      2. Ejemplo 3: Función no inyectiva
      3. Ejemplo 4: Función inyectiva
  2. Función Sobreyectiva
    1. Ejemplos
      1. Ejemplo 5: Función sobreyectiva
      2. Ejemplo 6: Función no sobreyectiva
      3. Ejemplo 7: Función sobreyectiva
  3. Función Biyectiva
    1. Ejemplos
      1. Ejemplo 8: Función inyectiva y sobreyectiva
      2. Ejemplo 9: Función no inyectiva y no sobreyectiva

Antes de profundizar sobre la composición de funciones, debemos estudiar primero las relaciones que una función f: A \longrightarrow B establece entre los elementos de A y B. Consideremos entonces algunas funciones que establecen relaciones muy particulares entre los elementos de conjuntos.

También pudiera interesarte

Anuncios

Función Inyectiva

Sea f : A \longrightarrow B una función, decimos que esta es una función inyectiva si esta establece una relación uno a uno entre los elementos de A y de B, es decir que cada elemento de Dom(f) está correspondido con único elemento de Rgo(f) y cada elemento de Rgo(f) está correspondido con un único elemento de Dom(f).

Formalmente, decimos que la función f es inyectiva si para todo a,b \in A se cumple lo siguiente:

a \neq b \Longrightarrow f(a) \neq f(b)

o su contrarrecíproco que es es equivalente a:

f(a) = f(b) \Longrightarrow a = b

Ejemplos

Ejemplo 1: Función inyectiva

Si consideramos la función f : \mathbb{R} \longrightarrow \mathbb{R} definida como f(x)=x^2, esta función no es inyectiva, esto se debe a que al tomar de forma muy particular, los elementos 2 y -2 de su dominio, al ser estos dos elementos distintos de su dominio, también deberían ser distintas sus imágenes, pero sus imágenes son diferentes pues,

f(-2) = (-2)^2 = (-2) \cdot (-2) = 4

f(2) = (2)^2 = (2) \cdot (2) = 4


Sin embargo, podemos identificar gráficamente una función inyectiva porque cualquier recta horizontal que tracemos en el plano cartesiano, cortará a la función f en un único punto. Es por esto que este tipo de ecuaciones también se conocen como Funciones 1-1 o Funciones 1 a 1. Veamos algunos ejemplos de funciones inyectivas para entender con más claridad este concepto.


Ejemplos

Ejemplo 2: Función inyectiva

Si consideramos la función f : \mathbb{R} \longrightarrow \mathbb{R} definida como f(x)=x^2,

Ella sí es inyectiva pues podemos notar que cualquier recta horizontal corta a la función en exactamente un sólo punto.

Ejemplo 3: Función no inyectiva

Si consideramos la función f : \mathbb{R} \longrightarrow \mathbb{R} definida como f(x)=x^2,

Ella no es inyectiva. Ya que al trazar una recta horizontal por el punto (0,4), notamos que esta corta a la función en dos puntos. Básicamente lo que estamos notando es que el punto 4 tiene dos preimágenes: 2 y -2.

Ejemplo 4: Función inyectiva

Si consideramos la función f : [0,+\infty] \longrightarrow \mathbb{R} definida como f(x)=x^2,

Ella sí es inyectiva pues podemos notar que cualquier recta horizontal corta a la función en exactamente un sólo punto.


Con este último ejemplo, notamos que al restringir el dominio de la función cuadrática ésta sí cumplió con las condiciones para ser inyectiva. Podemos concluir con toda confianza, que el hecho de que una función sea inyectiva o no, depende enteramente de la forma en que esté definido su dominio.




Función Sobreyectiva

Sea f : A \longrightarrow B una función, entonces f es una función sobreyectiva si todo elemento de B tiene una preimagen, es decir que Rgo(f)=B. Formalmente, f es sobreyectiva si:

Para \ todo \ b \in B, \ existe \ a \in A \ tal \ que \ f(a)=b

Identificamos gráficamente el rango de una función trazando rectas horizontales, diremos que un punto del Eje Y está en el rango de la función si la recta horizontal que pasa por dicho punto, corta a la función.

Veamos algunos ejemplos de funciones inyectivas para entender con más claridad este concepto.

Ejemplos

Ejemplo 5: Función sobreyectiva

Si consideramos la función f : \mathbb{R} \longrightarrow \mathbb{R} definida como f(x)=x^3,

Ella sí es sobreyectiva pues Rgo(f) = \mathbb{R}.

Ejemplo 6: Función no sobreyectiva

Si consideramos la función f : [0,+\infty] \longrightarrow \mathbb{R} definida como f(x)=\sqrt{x},

Ella no es sobreyectiva, ya que Rgo(f) = [0,+\infty] \neq \mathbb{R}.

Ejemplo 7: Función sobreyectiva

Si consideramos la función f : [0,+\infty] \longrightarrow [0,+\infty] definida como f(x)=\sqrt{x},

Ella sí es sobreyectiva pues Rgo(f) = [0,+\infty].


Con este último ejemplo, notamos que al restringir el conjunto de llegada de la función raíz cuadrada ésta sí cumplió con las condiciones para ser sobreyectiva. Podemos concluir con toda confianza, que el hecho de que una función sea sobreyectiva o no, depende enteramente de la forma en que esté definido su rango.




Función Biyectiva

Diremos que la función f : A \longrightarrow B es biyectiva si esta es inyectiva y sobreyectiva al mismo tiempo.

Ejemplos

Ejemplo 8: Función inyectiva y sobreyectiva

Si consideramos la función f: (0,+\infty) \longrightarrow \mathbb{R} definida como f(x) = \ln(x),

Ella sí es inyectiva pues podemos notar que cualquier recta horizontal corta a la función en exactamente un solo punto y además, sí es sobreyectiva ya que Rgo(f) = \mathbb{R}, por lo tanto, concluimos que esta función sí es biyectiva.

Ejemplo 9: Función no inyectiva y no sobreyectiva

Si consideramos la función f: \mathbb{R} \longrightarrow \mathbb{R} definida como

Función por partes | totumat.com

A partir del valor absoluto involucrado en la función, debemos notar que esta función está definida de la siguiente forma:

  • Si x>0 entonces f(x) = \frac{x}{x} = 1.
  • Si x<0 entonces f(x) = \frac{-x}{x} = -1.
  • Si x=0 entonces f(x) = 0.

Esta función no es inyectiva, pues si consideramos dos elementos mayores que cero, digamos, 5 y 7, sus imágenes son iguales pues f(5)=1 y f(7)=1. Además, esta función no es sobreyectiva, pues el conjunto de llegada es igual a \mathbb{R} y su rango es igual a \{ -1,0,1 \}.

Por lo tanto, concluimos que esta función no es biyectiva.

Esto se puede apreciar gráficamente:

Función por partes | totumat.com

Composición de Funciones y Dominio de Funciones Compuestas

  1. Composición de Funciones
    1. Ejemplos
      1. Ejemplo 1
      2. Ejemplo 2
      3. Ejemplo 3
  2. Dominio de una Función compuesta
    1. Ejemplos
      1. Ejemplo 4
      2. Ejemplo 5
      3. Ejemplo 6

Una vez que hemos definido las funciones elementales, podemos aplicar entre ellas, las operaciones básicas para definir nuevas funciones, esto es, suma, resta, multiplicación y división entre funciones. Sin embargo, es posible definir funciones sin recurrir a las operaciones básicas.

Veremos en esta sección, que podemos meter a una función dentro de otra para definir una nueva función, sin embargo, debemos ser cuidadosos pues el dominio y el rango de las funciones involucradas deben cumplir con ciertas condiciones.

También pudiera interesarte

Composición de Funciones

Existen funciones que no se pueden expresar como operaciones básicas de funciones elementales. Consideremos g : A \longrightarrow B y f: C \longrightarrow D dos funciones, donde B \cap C \neq \emptyset. Definimos la composición de g con f como una nueva función que corresponde a cada imagen de un elemento a \in A un único elemento c \in C, la denotamos como f \circ g : A \longrightarrow D y la definimos de la siguiente forma:

\Big(f \circ g \Big) (x) = f \Big( g(x) \Big)

Veamos con algunos ejemplos como calcular la composición de funciones.

Ejemplos

Ejemplo 1

Sean f(x)=x^2-2 y g(x)=x+1, calcule \Big(f \circ g \Big) (x).

\Big(f \circ g \Big) (x)  =  f \Big( g(x) \Big)  =  \big( g(x) \big)^2-2  =  (x+1)^2-2

Ejemplo 2

Sean f(x)=\dfrac{3}{x+2} y g(x)=\ln(x-1), calcule \Big(f \circ g \Big) (x).

\Big(f \circ g \Big) (x) = f \Big( g(x) \Big) = \dfrac{3}{g(x)+2} = \dfrac{3}{\ln(x-1)+2}

Ejemplo 3

Sean f(x)={\rm e}^{2x+5} y g(x)=\sqrt{1-x}, calcule \Big(g \circ f \Big) (x).

\Big(g \circ f \Big) (x) = g \Big( f(x) \Big) = \sqrt{1 - f(x)} = \sqrt{1 - {\rm e}^{2x+5}}


Básicamente al componer la función g con la función f, estamos sustituyendo el argumento de la función f con la función g.




Dominio de una Función compuesta

El dominio de este tipo de funciones viene dado por todos los elementos que están en el dominio de g : A \longrightarrow B cuyas imágenes están en el dominio de f: C \longrightarrow D, es decir,

Dom(f \circ g ) = \{ x \in Dom(g) : g(x) \in Dom(f) \}

Consideremos un Diagrama Sagital para ilustrar la composición de funciones.

En este Diagrama Sagital, el dominio de la función (f \circ g ) será el conjunto formado por a_1 y a_2. Notemos que si el rango de la función g está enteramente contenido en el dominio de la función f, entonces

Dom\Big(f \circ g \Big) = dom(f)

Determinar el dominio de una función compuesta (f \circ g ) no es tan simple como intersectar o unir conjuntos, hay que tomar en cuenta la naturaleza de ambas funciones con detenimiento y calcular los valores de x para los cuales g(x) satisface las condiciones impuestas por el dominio de f. Veamos con algunos ejemplos cual es la técnica para hacer esto.



Ejemplos

Ejemplo 4

Para calcular el dominio de la función f(x) = \ln(x^2-1), debemos notar que esta función es el resultado de la función x^2-1 compuesta con la función logaritmo neperiano y sabiendo que el dominio de ésta viene dado por todos los números reales mayores que cero, debemos determinar cuales son los valores de x para los cuales

x^2-1 > 0 \Rightarrow (x-1)(x+1) > 0

Por lo tanto, debemos calcular la solución de esta inecuación cuadrática para determinar la solución. Entonces, planteamos las siguientes ecuaciones:

x-1 > 0 y x+1 > 0
ó
x-1 < 0 y x+1 < 0

Despejando cada una de las ecuaciones, tenemos lo siguiente:

x > 1 y x > -1 (1)
ó
x < 1 y x < -1 (2)

Por lo tanto, podemos plantear las soluciones involucradas

Solución (1):
(1,+\infty) \cap (-1,+\infty) = (1,+\infty)

Solución (2):
(-\infty,1) \cap (-\infty,-1) = (-\infty,-1)

Por lo tanto, la solución general es (1,+\infty) \cup (-\infty,-1) que a su vez, es el dominio de la función f(x) = \ln(x^2-1).


Nota: Consulte la publicación de inecuaciones cuadráticas para ver con más detalle el cálculo de esta solución.


Ejemplo 5

Para calcular el dominio de la función f(x) = \text{\large \rm e}^{\sqrt{x+1}}, debemos notar que esta función es el resultado de la función \sqrt{x+1} compuesta con la función exponencial y sabiendo que el dominio de la función exponencial es el conjunto de todos los números reales, basta con determinar el dominio de \sqrt{x+1}, es decir, todos los números reales para los cuales x+1 \geq 0.

Por lo tanto, el dominio de la función f(x) = \text{\large \rm e}^{\sqrt{x+1}} es [-1,+\infty).

Ejemplo 6

Para calcular el dominio de la función f(x) = \frac{1}{x^2-9}, debemos notar que esta función es el resultado de la función x^2-9 compuesta con la función de proporcionalidad inversa y sabiendo que el dominio de ésta viene dado por todos los números reales distintos de cero, debemos determinar cuales son los valores de x para los cuales x^2-9 = 0 y los excluimos.

Por lo tanto, el dominio de la función f(x) = \frac{1}{x^2-9} es \mathbb{R} - \{ -3,3\}.


Transformación de funciones

  1. Traslación de Funciones
    1. Traslaciones en el Eje Y
    2. Traslaciones en el Eje X
  2. Reflexión de Funciones
    1. Respecto al Eje X
    2. Respecto al Eje Y
  3. Valor Absoluto de una Función
  4. Contracción y expansión de Funciones
    1. Respecto al Eje X
    2. Respecto al Eje Y

Las funciones elementales tienen variaciones que vienen dadas cuando se altera la expresión que las define al sumar, restar, multiplicar o dividir por un escalar.

Para entender las transformaciones de funciones o alteraciones que podemos efectuar sobre una función elemental, dibujemos primero el bosquejo de la gráfica de una función a la cual le podamos efectuar las transformaciones. Consideremos f(x) una función que pasa por el origen, es decir, tal que f(0)=0 y sea a > 0 un número real. Supongamos que la gráfica de la función f(x) es la siguiente:

También pudiera interesarte

Traslación de Funciones

Traslaciones en el Eje Y

Si consideramos la función f(x) + a, estamos sumando a a cada imagen de la función, gráficamente estamos trasladando la función f(x) en a unidades hacia arriba en el Eje Y de la siguiente forma:

Si consideramos la función f(x) - a, estamos restando a a cada imagen de la función, gráficamente estamos trasladando la función f(x) en a unidades hacia abajo en el Eje Y de la siguiente forma:

Notemos que hemos sumado a fuera de la función, es decir, hemos sumando a a la función como un todo. Es por esto que la traslación se ha dado en el Eje Y. Básicamente, lo que está ocurriendo es que si y=f(x) estamos graficando y \pm a. A continuación veremos una traslación que altera la imagen de la función si no las pre-imágenes de esta, es decir, los elementos del dominio.

Traslaciones en el Eje X

Para entender este tipo de traslaciones debemos tener claro el concepto de argumento de la función. Al considerar una función, cada elemento de su dominio será una pre-imagen de ésta y el argumento de la función será la expresión que define estas pre-imágenes. Veamos algunos ejemplos para entender mejor esta idea:

  • Si f(x)=x, la expresión que define el argumento de la función es x.
  • Si f(x)=x^2, estamos considerando la función cuadrática y la expresión que define el argumento es x.
  • Si f(x)=(x+1)^2, la expresión que define el argumento de esta función cuadrática es x+1. Hemos restado 1 al argumento de la función x^2.
  • Si f(x)=\sqrt{x+3}, la expresión que define el argumento de la función es x+3. Hemos sumado 3 al argumento de la función \sqrt{x}.
  • Si f(x)=\dfrac{1}{x-2}, la expresión que define el argumento de la función es x-2. Hemos restado 2 al argumento de la función \frac{1}{x}.
  • Si f(x)=\text{\rm \Large e}^{2x+7}, la expresión que define el argumento de la función es 2x+7. Hemos multiplicado por 2 y sumado 7 en el argumento de la función \text{\rm \Large e}^{x}.
  • Si f(x)=\ln(x-8), la expresión que define el argumento de la función es x-8. Hemos restado 8 al argumento de la función \ln(x).

Si consideramos la función f(x+a), estamos sumando a a cada pre-imagen de la función. Recordando que la función se anula en cero, es decir, f(0)=0. Debemos tomar en cuenta que

f(x+a)=0 \Rightarrow x + a = 0 \Rightarrow x=-a

gráficamente estamos trasladando la función f(x) hasta el punto donde se anula el argumento, esto es, en -a. Por lo que que en este caso particular, la función se traslada en a unidades hacia la izquierda en el Eje X de la siguiente forma:

Si consideramos la función f(x-a), estamos restando a a cada pre-imagen de la función. Recordando que la función se anula en cero, es decir, f(0)=0. Debemos tomar en cuenta que

f(x-a)=0 \Rightarrow x - a = 0 \Rightarrow x=a

gráficamente estamos trasladando la función f(x) hasta el punto donde se anula el argumento, esto es, en a. Por lo que que en este caso particular, la función se traslada en a unidades hacia la derecha en el Eje X de la siguiente forma:



Reflexión de Funciones

Respecto al Eje X

Si consideramos la función -f(x), estamos multiplicando por -1 a cada imagen de la función. Por lo tanto, todas las imágenes positivas de la función pasan a ser negativas y todas las imágenes negativas de la función pasan a ser positivas, gráficamente todos los elementos que están por encima del Eje X pasan a estar por debajo y todos los elementos que están por debajo del Eje X pasan a estar por encima de la siguiente forma:

Respecto al Eje Y

Si consideramos la función f(-x), estamos multiplicando por -1 a cada imagen de la función. Por lo tanto, todas las pre-imágenes positivas de la función pasan a ser negativas y todas las pre-imágenes negativas de la función pasan a ser positivas, gráficamente todos los elementos que están a la izquierda del Eje Y pasan a estar a la derecha y todos los elementos que están a la izquierda del Eje Y pasan a estar a la izquierda de la siguiente forma:



Valor Absoluto de una Función

Si consideramos el Valor Absoluto la función f(x), es decir, |f(x)|, debemos tomar en cuenta que

|f(x)| = f(x) \text{ si } f(x) > 0
ó
|f(x)| = -f(x) \text{ si } f(x) < 0

Por lo tanto, todas las imágenes positivas de la función permanecen positivas y todas las imágenes negativas de la función pasan a ser positivas, gráficamente todos los elementos que están por encima del Eje X permanecen inalterados y todos los elementos que están por debajo del Eje X pasan a estar por encima de la siguiente forma:



Contracción y expansión de Funciones

Al considerar funciones, definimos un escalar simplemente como un número constante, que tal como lo dice su nombre, altera la escala de estas.

Respecto al Eje X

Si a>1, consideramos la función a \cdot f(x), estamos multiplicando por a a cada imagen de la función. Por lo tanto, esta crecerá a una velocidad a veces más rápido, haciendo que se expanda la función f(x) verticalmente de la siguiente forma:

Si a<1, consideramos la función a \cdot f(x), estamos multiplicando por a a cada imagen de la función. Por lo tanto, esta crecerá a una velocidad a veces más lento, haciendo que se contraiga la función f(x) verticalmente de la siguiente forma:

Respecto al Eje Y

Si a<1, consideramos la función f(a \cdot x), estamos multiplicando por a a cada pre-imagen de la función. Por lo tanto, esta alcanzará una imagen después de lo que la alcanzaba, haciendo que se expanda la función f(x) horizontalmente de la siguiente forma:

Si a>1, consideramos la función f(a \cdot x), estamos multiplicando por a a cada pre-imagen de la función. Por lo tanto, esta alcanzará una imagen antes de lo que la alcanzaba, haciendo que se contraiga la función f(x) horizontalmente de la siguiente forma:


Funciones Trascendentes

  1. Función Exponencial
  2. Función Logarítmica

Consideremos ahora un tipo de funciones que no se pueden expresar de la forma x^n donde n es un número natural, las llamaremos Funciones Trascendentes o Funciones Trascendentales. Veremos a continuación las funciones trascendentales más comunes en la aplicación de las matemáticas.

También pudiera interesarte

Función Exponencial

Si a es un número real, definimos su n-ésima potencia como el producto de a multiplicado por él mismo n veces, donde n es un número natural, y lo denotamos la siguiente forma:

a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-veces}

Consideremos algunas propiedades de las potencias que nos permitirán entender el comportamiento de esta función:

  • a^0 = 1
  • a^1 = a
  • a^{-1} = \frac{1}{a}, \ a \neq 0
  • a^{-n} = \frac{1}{a^n}, \ a \neq 0

Definimos la función exponencial como f: \mathbb{R} \rightarrow \mathbb{R}, \ f(x)=a^x. Notemos que el exponente puede ser cualquier número real. Generalmente se define considerando a=\text{\Large e}, que es el Número de Euler o Constante de Neper, éste es aproximadamente 2.71828182846\ldots. Graficamos la función f(x)=\text{\Large e}^{x} de la siguiente forma:

Note que cuando x adquiere valores muy grandes en los números negativos, la función exponencial se hace muy pequeña, sin embargo, nunca es igual a cero y por lo tanto, nunca toca al Eje X.



Función Logarítmica

Si a un número natural, b un número positivo y c un número real. Entonces definimos el logaritmo base a como una equivalencia de ecuaciones de la siguiente forma:

\log_a(b) = c \Longleftrightarrow a^c = b

Consideremos algunas propiedades de los logaritmos que nos permitirán entender el comportamiento de esta función:

  • \log_a(1) = 0
  • \log_a(a) = 1
  • \log_a(a^n) = n

Se define entonces la función logaritmo base b de x como f: \mathbb{R} \rightarrow \mathbb{R}, \ f(x)= \log_b(x). Al escribir \log(x) se sobre entiende que es el logaritmo base 10 de x. Generalmente se usa la Función Logaritmo Neperiano que está definida como f(x)=\log_\text{e}(x) y su notación es f(x)=\ln(x). Graficamos la función logaritmo neperiano de la siguiente forma:

Note que cuando x adquiere valores muy pequeños, la función logarítmica se hace muy pequeña, sin embargo, nunca toca al Eje Y.