La Ecuación de Oferta

Suponga que usted es un productor de tomates y provee a un supermercado semanalmente, y ve que un kilo de tomates tiene un precio de 200 Ps, considerando los costos de producción, le parece que este precio es generoso para usted por lo que decide proveer al supermercado con 40 kilos de tomate. La semana siguiente vuelve al supermercado y ve que un kilo de tomates tiene un precio de 100 Ps, considerando que está en la mitad del precio de la semana anterior, usted decide proveer al supermercado con 30 kilos de tomate.


Nota: Perolitos (Ps.) es la moneda oficial de totumat.


También pudiera interesarte

Anuncios

Esta situación se presenta de forma general, pues al considerar el precio de un artículo, los productores proveerán más unidades del artículo cuando el precio es alto y proveerán menos unidades del artículo cuando el precio es bajo, esto se conoce como la oferta de un artículo. Entonces, si bien podemos intuir que la oferta de un artículo aumenta a medida que el precio del artículo aumenta, nuestro propósito será el de determinar la forma cuantificable de esta relación.

Para esto, definimos un plano cartesiano cuyos ejes están definidos por la variable precio, denotada por p y la variable cantidad, denotada por q; para mantener la simplicidad de los modelos, consideraremos una economía simple, es decir, tal que las variables p y q sólo pueden tener valores positivos. De esta forma, nos ubicaremos sólo en el primer cuadrante del plano cartesiano.

Curva de Oferta | totumat.com

Veamos en los siguientes ejemplos, cómo conociendo la oferta y el precio de un artículo en un momento dado, podemos definir rectas que describen de forma general la oferta del artículo.

Anuncios

Ejemplos

Ejemplo 1

Suponga que la oferta semanal de zanahoria una pequeña tienda de verduras de la ciudad es de 10 kilos cuando el precio es de 20 Ps. por kilo, y de 7 kilos cuando el precio es de 15 Ps. por kilo. ¿Cuál es la ecuación general de la recta que define la relación entre el precio y la oferta? ¿Cuál será la cantidad ofertada si fija el precio en 17.5 Ps.?

Debemos considerar que si la oferta es de 10 kilos cuando el precio es de 20 Ps., podemos representar esta información como un punto (p,q) el plano cartesiano donde q=10 y p=20, es decir, el punto (10,20); de igual forma, si la oferta es de 7 kilos cuando el precio es de 15 Ps., podemos representar esta información con el punto (7,15).

De esta forma, si contamos con estos dos puntos, podemos calcular la recta que pasa por estos dos usando la ecuación punto-punto. Entonces, si P_1 = (10,20) y P_2 = (7,15) son dos puntos en el plano cartesiano, calculamos el valor de la pendiente,

m = \ \frac{p_2 - p_1}{q_2 - q_1}
= \ \frac{15 - 20}{7 - 10}
= \ \frac{5}{3}

Posteriormente aplicamos la ecuación punto-pendiente, escogiendo el punto de nuestra preferencia. Usemos el punto P_1

\ (p - p_1) = m \cdot (q - q_1)
\Rightarrow \ (p - 20) = \frac{5}{3} \cdot (q - 10)
\Rightarrow \ p - 20 = \frac{5}{3} \cdot q - \frac{50}{3}
\Rightarrow \ p = \frac{5}{3} \cdot q - \frac{50}{3} + 20
\Rightarrow \ p = \frac{5}{3} \cdot q + \frac{10}{3}

La recta que pasa por los puntos P_1 y P_2 es llamada la Ecuación de oferta de zanahoria. Este tipo de ecuaciones siempre tendrá pendiente positiva y su gráfica será una recta creciente.

Curva de Oferta | totumat.com

Para determinar cual será la cantidad ofertada si se fija el precio en 17.5 Ps. debemos considerar la ecuación de oferta y sustituir el valor p= 17.5 en ella, posteriormente se despeja la variable q, de la siguiente forma

\Rightarrow \ 17.5 = \frac{5}{3} \cdot q + \frac{10}{3}
\Rightarrow \ -\frac{5}{3} \cdot q = -17.5 + \frac{10}{3}
\Rightarrow \ -\frac{5}{3} \cdot q = -\frac{85}{6}
\Rightarrow \ q = \frac{ \ -\frac{85}{6} \ }{ -\frac{5}{3}}
\Rightarrow \ q = \frac{17}{2}
\Rightarrow \ q = 8.5

Por lo tanto, la oferta de zanahoria será de 8,5 kilos semanales si se fija el precio en 17.5 Ps.

Anuncios

Ejemplo 2

Suponga que la oferta mensual de zapatos para dama en una zapatería es de 120 pares cuando el precio es de 100 Ps. por par, y de 80 pares cuando el precio es de 65 Ps. por par. ¿Cuál es la ecuación general de la recta que define la relación entre el precio y la oferta? ¿Cuál será la cantidad ofertada si fija el precio en 90 Ps.?

Debemos considerar que si la oferta es de 120 pares cuando el precio es de 100 Ps., podemos representar esta información con el punto (120,100); de igual forma, si la oferta es de 80 pares cuando el precio es de 65 Ps., podemos representar esta información con el punto (80,65).

De esta forma, si contamos con estos dos puntos, podemos calcular la recta que pasa por estos dos usando la ecuación punto-punto. Entonces, si P_1 = (120,100) y P_2 = (80,65) son dos puntos en el plano cartesiano, calculamos el valor de la pendiente,

m = \ \frac{p_2 - p_1}{q_2 - q_1}
= \ \frac{65 - 100}{80 - 120}
= \ \frac{7}{8}

Posteriormente aplicamos la ecuación punto-pendiente, escogiendo el punto de nuestra preferencia. Usemos el punto P_1

\ (p - p_1) = m \cdot (q - q_1)
\Rightarrow \ (p - 65) = \frac{7}{8} \cdot (q - 80)
\Rightarrow \ p - 65 = \frac{7}{8} \cdot q - 70
\Rightarrow \ p = \frac{7}{8} \cdot q -70 + 65
\Rightarrow \ p = \frac{7}{8} \cdot q - 5

La recta que pasa por los puntos P_1 y P_2 es llamada la Ecuación de oferta de zapatos para dama. Este tipo de ecuaciones siempre tendrá pendiente negativa y su gráfica será una recta decreciente.

Curva de Oferta | totumat.com

Para determinar cuál será la cantidad ofertada si se fija el precio en 90 Ps. debemos considerar la ecuación de oferta y sustituir el valor p = 90 en ella, posteriormente se despeja la variable q, de la siguiente forma

\Rightarrow \ 90 = \frac{7}{8} \cdot q - 5
\Rightarrow \ -\frac{7}{8} \cdot q = -90 - 5
\Rightarrow \ -\frac{7}{8} \cdot q = -95
\Rightarrow \ q = \frac{ \ -95 \ }{-\frac{7}{8}}
\Rightarrow \ q = \frac{760}{7}
\Rightarrow \ q \approx 108.57

Por lo tanto, la oferta de zapatos para damas será de aproximadamente 109 pares mensuales si se fija el precio en 90 Ps.


Debemos notar que en ambos ejemplos, las rectas que definen la oferta tienen pendiente positiva y en consecuencia, son rectas crecientes. Entonces concluimos que de forma general, si m > 0, cualquier ecuación de oferta tiene la forma

p = m \cdot q + b

Anuncio publicitario

2 comentarios en “La Ecuación de Oferta

Responder a Matemáticas 11 – Sección 04 – Semestre A2022 – totumat Cancelar la respuesta

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.