Depreciación Simple

Es un hecho que el tiempo erosiona el valor de cualquier objeto, ya sea por quedar obsoleto, por desgaste o por pérdida de funcionalidad. Esta es una situación que hay que tener en consideración siempre que se adquiere un bien. Suponga de forma particular que una empresa adquiere un bien y desea determinar su valor con el pasar de los años, ya que de esta forma podrá proyectar la fecha en la que se deba desechar o sustituir por uno nuevo.

Digamos que este bien se adquiere en V_1 Perolitos (Ps) y que este se deprecia a razón de r Ps. por año. Entonces, tenemos que

Durante el transcurso del primer año, este bien tiene un valor de

V_1

Durante el transcurso del segundo año, este bien tiene un valor de

V_1 - r

Durante el transcurso del tercer año, este bien tiene un valor de

V_1 - 2r

Y así sucesivamente, podemos concluir que durante el transcurso del n-ésimo año, este bien tiene un valor de

V_1 - (n-1)r

Notando entonces que el valor de este bien en el n-ésimo año está determinando por una sucesión aritmética decreciente, a esta expresión se le conoce como la fórmula de depreciación simple, al valor V_1 se le conoce como valor inicial y a r se le conoce como la tasa de depreciación. Veamos entonces algunos ejemplos donde podemos aplicar esta fórmula.

Ejemplos

Ejemplo 1

Suponga que una carnicería adquiere una moledora de carne con un valor de V_1 = 9336 Ps. y esta se deprecia anualmente en r = 577 Ps. Determine su valor en el año 6.

Aplicando la fórmula de depreciación simple, el valor de este bien viene dado de la siguiente manera:

V_n = 9336 +577 \cdot ( 6 -1) = 6451

Por lo tanto, el valor de este bien en el año 6 es de 6451 Ps.

Ejemplo 2

Suponga que una panificadora adquiere una amasadora con un valor de V_1 = 1495 Ps. y esta se deprecia anualmente en r = 132 Ps. Determine su valor en el año 8.

Aplicando la fórmula de depreciación simple, el valor de este bien viene dado de la siguiente manera:

V_n = 1495 +132 \cdot ( 8 -1) = 571

Por lo tanto, el valor de este bien en el año 8 es de 571 Ps.

Ejemplo 3

Suponga que una empresa constructora adquiere una batidora de cemento con un valor de V_1 = 2002 Ps. y esta se deprecia anualmente en r = 160 Ps. Determine su valor en el año 7.

Aplicando la fórmula de depreciación simple, el valor de este bien viene dado de la siguiente manera:

V_n = 2002 +160 \cdot ( 7 -1) = 1042

Por lo tanto, el valor de este bien en el año 7 es de 1042 Ps.

Ejemplo 4

Suponga que una cafetería adquiere una máquina de espresso con un valor de V_1 = 9963 Ps. y esta se deprecia anualmente en r = 159 Ps. Determine su valor en el año 5.

Aplicando la fórmula de depreciación simple, el valor de este bien viene dado de la siguiente manera:

V_n = 9963 +159 \cdot ( 5 -1) = 9327

Por lo tanto, el valor de este bien en el año 5 es de 9327 Ps.


Determinar la fórmula general depreciación simple

Considerando que la depreciación simple está determinada por una sucesión aritmética, es posible determinar la fórmula general de depreciación conociendo el valor que tuvo el bien en dos años distintos.

Formalmente, si consideramos el valor que el bien adquirió en dos años distintos, digamos V_i = V_1 - (i-1) \cdot r y V_j = V_1 - (j-1) \cdot r, podemos determinar el valor de V_1 y de r calculando la solución del siguiente sistema de ecuaciones lineales:

Veamos en los siguientes ejemplos como determinar la fórmula general de una sucesión aritmética usando esta técnica.

Ejemplos

Ejemplo 5

Considerando que una moledora de carne tuvo un valor de V_{8} = 9284 en el año 8 y V_{17} = 6974 en el año 17 . Determine la fórmula general de depreciación simple de este bien.

Para esto, calculamos la solución del siguiente sistema de ecuaciones lineales:

Para calcular la solución de este sistema de ecuaciones restamos ambas ecuaciones, notando que V_1 - V_1 = 0 para obtener la siguiente ecuación

(9) \cdot r = 2310

A partir de esta ecuación podemos despejar r, para obtener que r = \frac{ 2310 }{ 9 } y sustituirlo en la ecuación de nuestra preferencia para calcular V_1.

Sustituimos r en la primera ecuación y despejamos V_1

Finalmente, concluimos que el precio inicial de este bien es de V_1 = \frac{33242}{3} \approx 11081 latex y la tasa de depreciación es de r = \frac{770}{3} \approx 257 , podemos expresar la fórmula general que define a la depreciación simple del bien de la siguiente manera:

V_n = \frac{33242}{3} - (n-1) \cdot \left( \frac{770}{3} \right)

Ejemplo 6

Considerando que una amasadora tuvo un valor de V_{8} = 9834 en el año 8 y V_{15} = 8155 en el año 15 . Determine la fórmula general de depreciación simple de este bien.

Para esto, calculamos la solución del siguiente sistema de ecuaciones lineales:

Para calcular la solución de este sistema de ecuaciones restamos ambas ecuaciones, notando que V_1 - V_1 = 0 para obtener la siguiente ecuación

(7) \cdot r = 1679

A partir de esta ecuación podemos despejar r, para obtener que r = \frac{ 1679 }{ 7 } y sustituirlo en la ecuación de nuestra preferencia para calcular V_1.

Sustituimos r en la primera ecuación y despejamos V_1

Finalmente, concluimos que el precio inicial de este bien es de V_1 = 11513 y la tasa de depreciación es de r = \frac{1679}{7} \approx 240 , podemos expresar la fórmula general que define a la depreciación simple del bien de la siguiente manera:

V_n = 11513 - (n-1) \cdot \left( \frac{1679}{7} \right)

Ejemplo 7

Considerando que una batidora de cemento tuvo un valor de V_{15} = 9091 en el año 15 y V_{17} = 1535 en el año 17 . Determine la fórmula general de depreciación simple de este bien.

Para esto, calculamos la solución del siguiente sistema de ecuaciones lineales:

Para calcular la solución de este sistema de ecuaciones restamos ambas ecuaciones, notando que V_1 - V_1 = 0 para obtener la siguiente ecuación

(2) \cdot r = 7556

A partir de esta ecuación podemos despejar r, para obtener que r = \frac{ 7556 }{ 2 } y sustituirlo en la ecuación de nuestra preferencia para calcular V_1.

Sustituimos r en la primera ecuación y despejamos V_1

Finalmente, concluimos que el precio inicial de este bien es de V_1 = 61983 y la tasa de depreciación es de r = 3778, podemos expresar la fórmula general que define a la depreciación simple del bien de la siguiente manera:

V_n = 61983 - (n-1) \cdot \left( 3778 \right)

Ejemplo 8

Considerando que una máquina de espresso tuvo un valor de V_{3} = 3486 en el año 3 y V_{7} = 3439 en el año 7 . Determine la fórmula general de depreciación simple de este bien.

Para esto, calculamos la solución del siguiente sistema de ecuaciones lineales:

Para calcular la solución de este sistema de ecuaciones restamos ambas ecuaciones, notando que V_1 - V_1 = 0 para obtener la siguiente ecuación

(4) \cdot r = 47

A partir de esta ecuación podemos despejar r, para obtener que r = \frac{ 47 }{ 4 } y sustituirlo en la ecuación de nuestra preferencia para calcular V_1.

Sustituimos r en la primera ecuación y despejamos V_1

Finalmente, concluimos que el precio inicial de este bien es de V_1 = \frac{7019}{2} \approx 3510 latex y la tasa de depreciación es de r = \frac{47}{4} \approx 12 , podemos expresar la fórmula general que define a la depreciación simple del bien de la siguiente manera:

V_n = \frac{7019}{2} - (n-1) \cdot \left( \frac{47}{4} \right)


El valor de desecho

A medida que un bien pierde su valor, llega un punto en el que entrará en desuso o que su reventa no presentará un ingreso significativo, a este valor se le conoce como valor de desecho (o valor residual) y los años que pasan desde que se adquiere el bien hasta que su valor es igual al valor de desecho, se conoce como vida útil del bien.

Veamos en los siguientes ejemplos como calcular la vida útil de un bien.

Ejemplos

Ejemplo 9

Suponga que una carnicería adquiere una moledora de carne con un valor de V_1 = 6397 Ps. y esta se deprecia anualmente en r = 541 Ps. Determine su vida útil si su valor de desecho es igual a 1066.

Aplicando la fórmula de depreciación, el valor de este bien durante el n-ésimo año viene dado de la siguiente manera:

V_n = 6397 - 541 \cdot (n -1)

Nuestro propósito es determinar el valor de n para el cual V_n= 1066 , es decir, para el cual 6397 +541 \cdot (n -1) = 1066 y para esto, despejamos n.

Por lo tanto, la moledora de carne tiene una vida útil de aproximadamente 11 años.

Ejemplo 10

Suponga que una panificadora adquiere una amasadora con un valor de V_1 = 8059 Ps. y esta se deprecia anualmente en r = 376 Ps. Determine su vida útil si su valor de desecho es igual a 1343.

Aplicando la fórmula de depreciación, el valor de este bien durante el n-ésimo año viene dado de la siguiente manera:

V_n = 8059 - 376 \cdot (n -1)

Nuestro propósito es determinar el valor de n para el cual V_n= 1343 , es decir, para el cual 8059 +376 \cdot (n -1) = 1343 y para esto, despejamos n.

Por lo tanto, la amasadora tiene una vida útil de aproximadamente 19 años.

Ejemplo 11

Suponga que una empresa constructora adquiere una batidora de cemento con un valor de V_1 = 2663 Ps. y esta se deprecia anualmente en r = 161 Ps. Determine su vida útil si su valor de desecho es igual a 666.

Aplicando la fórmula de depreciación, el valor de este bien durante el n-ésimo año viene dado de la siguiente manera:

V_n = 2663 - 161 \cdot (n -1)

Nuestro propósito es determinar el valor de n para el cual V_n= 666 , es decir, para el cual 2663 +161 \cdot (n -1) = 666 y para esto, despejamos n.

Por lo tanto, la batidora de cemento tiene una vida útil de aproximadamente 13 años.

Ejemplo 12

Suponga que una cafetería adquiere una máquina de espresso con un valor de V_1 = 8530 Ps. y esta se deprecia anualmente en r = 206 Ps. Determine su vida útil si su valor de desecho es igual a 2132.

Aplicando la fórmula de depreciación, el valor de este bien durante el n-ésimo año viene dado de la siguiente manera:

V_n = 8530 - 206 \cdot (n -1)

Nuestro propósito es determinar el valor de n para el cual V_n= 2132 , es decir, para el cual 8530 +206 \cdot (n -1) = 2132 y para esto, despejamos n.

Por lo tanto, la máquina de espresso tiene una vida útil de aproximadamente 32 años.


Autor: Anthonny Arias

Coordinador de Matemáticas de la Facultad de Ciencias Económicas y Sociales, Universidad de Los Andes, Mérida, Venezuela.

¿Tiendes dudas? ¿Requieres más ejemplos? No dudes en escribir.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios .