Ecuaciones Diferenciales Ordinarias Lineales de Orden Superior

  1. Ecuaciones Diferenciales con Problemas de valor inicial
    1. Teorema (De existencia y unicidad)
    2. Ejemplos
      1. Ejemplo 6
      2. Ejemplo 7
      3. Ejemplo 8
  2. Ecuaciones diferenciales con Problemas de condiciones en la frontera
    1. Ejemplos
      1. Ejemplo 9
      2. Ejemplo 10
      3. Ejemplo 11
  1. Ecuaciones Diferenciales con Problemas de valor inicial
    1. Teorema (De existencia y unicidad)
    2. Ejemplos
      1. Ejemplo 6
      2. Ejemplo 7
      3. Ejemplo 8
  2. Ecuaciones diferenciales con Problemas de condiciones en la frontera
    1. Ejemplos
      1. Ejemplo 9
      2. Ejemplo 10
      3. Ejemplo 11

Hasta ahora hemos calculado la solución de algunas ecuaciones diferenciales de primer orden, es decir, de aquellas ecuaciones diferenciales en las que el mayor orden de las derivadas involucradas es igual a uno. Durante esta sección, estudiaremos ecuaciones diferenciales de orden mayor que uno, precisamente, ecuaciones diferenciales ordinarias de orden n, es decir, aquellas definidas de la siguiente forma

F \left( x,y,y',y'', \ldots ,y^{(n)} \right)=0

También pudiera interesarte

Los métodos que se presentarán en esta sección se usarán para calcular la solución de las ecuaciones diferenciales ordinarias lineales de orden superior, es decir, aquellas expresadas como una combinación lineal (recordando que la linealidad es respecto a la variable y y sus derivadas) de la siguiente forma

a_n(x) y^{(n)} + a_{n-1}(x) y^{(n-1)} + \ldots + a_1(x) y' + a_0(x) y = g(x)

Donde a_n(x), \, a_{n-1}(x), \, \ldots , \, a_1(x) , \, a_0(x) y g(x) son funciones que no necesariamente son lineales. Veamos algunos ejemplos para aprender a identificar este tipo de ecuaciones diferenciales.

Ejemplos

Ejemplo 1

La ecuación diferencial \textit{\Large e}^xy - y''=0 es lineal respecto y y y'' pues estos elementos permanecen inalterados, además, la derivada de mayor orden involucrada es de segundo orden, por lo tanto, concluimos que es una ecuación diferencial ordinaria lineal de segundo orden.

Ejemplo 2

La ecuación diferencial 2x^6y''' + 9x^8y'= 0 es lineal respecto a la variable y' y y''' pues estos elementos permanecen inalterados, además, la derivada de mayor orden involucrada es de tercer orden, por lo tanto, concluimos que es una ecuación diferencial ordinaria lineal de tercer orden.

Ejemplo 3

La ecuación diferencial 5\ln(x)y'' + 13 y' - \frac{20}{x}y = 30\sqrt{x} es lineal respecto a y, y' y y'' pues estos elementos permanecen inalterados, además, la derivada de mayor orden involucrada es de segundo orden, por lo tanto, concluimos que es una ecuación diferencial ordinaria lineal de segundo orden.

Ejemplo 4

La ecuación diferencial 2x^2y^{(4)} + 4xy^7 = 7x^4 no es lineal respecto a y pues este elemento tiene potencia igual a siete, además, la derivada de mayor orden involucrada es de cuarto orden, por lo tanto, concluimos que es una ecuación diferencial ordinaria no lineal de cuarto orden.

Ejemplo 5

La ecuación diferencial 6 y'' \textit{\Large e}^{x} - 8 y' \cdot y = \textit{\Large e}^{2x} no es lineal respecto a y y y' pues estos elementos están siendo multiplicados entre sí, además, la derivada de mayor orden involucrada es de segundo orden, por lo tanto, concluimos que es una ecuación diferencial ordinaria no lineal de segundo orden.



Ecuaciones Diferenciales con Problemas de valor inicial

Al considerar ecuaciones diferenciales ordinarias de primer orden definimos una condición inicial sobre la variable y como y(x_{0})=y_0, sin embargo, debemos ser cuidadosos al definir condiciones iniciales sobre ecuaciones de orden superior, pues en el caso de una ecuación diferencial ordinaria de orden n, la condición inicial está definida sobre la variable y y sus primeras n-1 derivadas de la siguiente forma

y(x_0) = y_0, \, y'(x_0) = y_1, \, \ldots , \, y^{(n-1)}(x_0) = y_n

Antes de empezar a calcular la solución de las ecuaciones diferenciales ordinarias de orden n es importarse preguntarse: ¿cómo sabemos que en efecto podemos encontrar la solución de una ecuación que cumpla con esa condición? A continuación veremos un teorema que nos permitirá determinar si una ecuación diferencial con un problema de valor inicial tiene solución.

Teorema (De existencia y unicidad)

Sean a_n(x), \, a_{n-1}(x), \, \ldots , \, a_1(x) , \, a_0(x) y g(x) funciones continuas en un intervalo I con a_n(x) \neq 0 para todo x \in I. Si x=x_0 es un punto de este intervalo, entonces existe una única solución y(x) para la ecuación

a_n(x) y^{(n)} + a_{n-1}(x) y^{(n-1)} + \ldots + a_1(x) y' + a_0(x) y = g(x)

con la siguiente condición inicial para la variable y y sus primeras n-1 derivadas

y(x_0) = y_0, \, y'(x_0) = y_1, \, \ldots , \, y^{(n-1)}(x_0) = y_n

Consideremos algunos ejemplos para entender la forma que deben tener las ecuaciones diferenciales para que cumplan con las condiciones de este teorema.

Ejemplos

Ejemplo 6

Consideremos la siguiente ecuación diferencial ordinaria con su respectivo problema de valor inicial

y'' - 4y = 12x

y(0)=4, \ \ y'(0)=1

Entonces, a_2(x)=1, a_1(x)=0, a_0(x)=-4, y g(x)=12x son sus coeficientes y cada uno de estos es una función continua en cualquier intervalo I que contenga a x_{0}=0.

Por lo tanto, existe una única solución y(x) para esta ecuación en cualquier intervalo I.

Ejemplo 7

Consideremos la siguiente ecuación diferencial ordinaria con su respectivo problema de valor inicial

5\textit{\Large e}^{x}y''' - 3\textit{\Large e}^{x+3}y' = 9\textit{\Large e}^{x}

y(1)=1, \ \ y'(1)=1, \ \ y''(1)=1

Entonces, a_3(x)=5\textit{\Large e}^{x}, a_2(x)=0, a_1(x)=- 3\textit{\Large e}^{x+3}, a_0(x) = 0 y g(x)= 9\textit{\Large e}^{x} son sus coeficientes y cada uno de estos es una función continua en cualquier intervalo I que contenga a x_{0}=1.

Por lo tanto, existe una única solución y(x) para esta ecuación en cualquier intervalo I.

Ejemplo 8

Consideremos la siguiente ecuación diferencial ordinaria con su respectivo problema de valor inicial

\frac{6}{x}y'' + \frac{10}{x^2}y' - \frac{1}{x^3}y = 4\sqrt{x}

y(5)=-1, \ \ y'(5)=1

Entonces, a_2(x)=\frac{6}{x}, a_1(x)=\frac{10}{x^2}, a_0(x) = - \frac{1}{x^3} y g(x)= 4\sqrt{x} son sus coeficientes y cada uno de estos es una función continua en cualquier intervalo I de la forma (0,b) contenga a x_{0}=5.

Por lo tanto, existe una única solución y(x) para esta ecuación en cualquier intervalo I de la forma (0,b) contenga a x_{0}=5.




Ecuaciones diferenciales con Problemas de condiciones en la frontera

Al considerar una ecuación diferencial ordinaria de orden n, podemos definir un problema de valor inicial fijando condiciones sobre las funciones y(x), y'(x), \ldots ,y^{(n-1)}(x) que definen la solución de la ecuación sobre un único punto.

Sin embargo, puede ocurrir que al considerar las funciones y(x), y'(x), \ldots ,y^{(n-1)}(x), estas no estén todas condicionadas en un único valor inicial, sino en puntos diferentes valores x_{0},x_{1}, \ldots ,x_{n-1}. A este tipo de problemas los llamamos problemas de condiciones en la frontera.

De forma general, las condiciones en la frontera para una ecuación diferencial ordinaria de orden n están expresados de la siguiente forma:

\alpha_{11} \cdot y(x_{1}) + \alpha_{12} \cdot y'(x_{1}) + \ldots + \alpha_{1 \ n-1} \cdot y^{(n-1)}(x_{1}) = \gamma_{1}
\alpha_{21} \cdot y(x_{2}) + \alpha_{22} \cdot y'(x_{2}) + \ldots + \alpha_{2 \ n-1} \cdot y^{(n-1)}(x_{2}) = \gamma_{2}
\vdots
\alpha_{n1} \cdot y(x_{n-1}) + \alpha_{n2} \cdot y'(x_{n-1}) + \ldots + \alpha_{n \ n-1} \cdot y^{(n-1)}(x_{n-1}) = \gamma_{n}

Y aunque estas condiciones parecieran complicadas, a medida que vamos particularizando los casos, estas se simplifican. Consideremos entonces, algunos ejemplos para entender como están expresadas las condiciones en la frontera para casos particulares.

Ejemplos

Ejemplo 9

Considere la siguiente ecuación diferencial ordinaria lineal de segundo orden con su respectiva condición en la frontera

3x^2 y'' + 7xy'+ 9 = 10x^3

y(1)=4, \ \ y(3)=-1

Las condiciones y(1)=4 y y(-3)=-1 son llamadas condiciones de frontera y, si observamos el caso general para ecuaciones ordinarias de segundo orden, podemos identificar estas condiciones de la siguiente forma

1 \cdot y(1) + 0 \cdot y'(1) = 4
1 \cdot y(3) + 0 \cdot y'(3) = -1

Ejemplo 10

Considere la siguiente ecuación diferencial ordinaria no lineal de tercer orden con su respectiva condición en la frontera

\ln(x) y'' + 6\ln(x)y = -10

y(-2)=6, \ \ y'(1)=10

Las condiciones y(-2)=6 y y'(1)=10 son llamadas condiciones de frontera y, si observamos el caso general para ecuaciones ordinarias de segundo orden, podemos identificar estas condiciones de la siguiente forma

1 \cdot y(-2) + 0 \cdot y'(-2) = 6
0 \cdot y(1) + 1 \cdot y'(3) = 10

Ejemplo 11

Considere la siguiente ecuación diferencial ordinaria no lineal de tercer orden con su respectiva condición en la frontera

-5 y''' + 7x^3y^4 = 0

y'(0)=1, \ \ y'(2)=2, \ \ y''(1)=-1

Las condiciones y'(0)=1, y'(2)=2, y''(1)=-1 son llamadas condiciones de frontera y, si observamos el caso general para ecuaciones ordinarias de segundo orden, podemos identificar estas condiciones de la siguiente forma

0 \cdot y(0) + 1 \cdot y'(0) + 0 \cdot y''(0) = 1
0 \cdot y(2) + 1 \cdot y'(2) + 0 \cdot y''(2) = 2
0 \cdot y(1) + 0 \cdot y'(1) + 1 \cdot y''(1) = -1



Es importante tomar en cuenta que los problemas de condiciones en la frontera pueden tener varias soluciones, una solución o ninguna solución. Esto se puede apreciar mejor con una interpretación gráfica de la solución de de una ecuación con problemas de condiciones en la frontera

Gráficamente, al considerar la solución de una ecuación diferencial ordinaria de orden n, esta es una función que satisface igualdad planteada por la ecuación en un intervalo I que contiene a x_{1}, x_{2}, \ldots ,x_{n}, cuya gráfica pasa por los puntos (x_{1},y(x_{1})), (x_{2},y(x_{2})), \ldots, (x_{n},y(x_{n})).

Para entender esta idea, en el siguiente gráfico se presenta la solución de una ecuación diferencial ordinaria de segundo orden. La solución es una función que satisface igualdad planteada por la ecuación en un intervalo I que contiene a x_{1} y x_{2}; cuya gráfica (de la función solución) pasa por los puntos (x_{1},y(x_{1})) y (x_{2},y(x_{2})).


Ecuaciones Diferenciales – Modelo de crecimiento y decrecimiento poblacional

  1. El Modelo de Crecimiento Poblacional
    1. Ejemplo

Usualmente las ecuaciones diferenciales se emplean para modelar el comportamiento de un fenómeno a través del tiempo. De forma general, si consideramos ecuaciones diferenciales ordinarias lineales de primer orden, estas estarán expresadas de la forma

x' + u(t) \cdot x = w(t)

Donde u y w son funciones que dependen de la variable t.

También pudiera interesarte

El Modelo de Crecimiento Poblacional

Empecemos por considerar uno de los modelos más básicos de las ecuaciones diferenciales ordinarias lineales de primer orden en un tiempo t: el caso homogéneo con coeficiente constante, es decir, tal que w(t)=0 y u(t)=k. En este caso, las ecuaciones estarán expresadas de la forma

x' - k \cdot x = 0 \Longleftrightarrow x' = k \cdot x

Con valor inicial x(0)=x_{0}. En este caso la constante k será conocida como constante de proporcionalidad y este tipo de ecuaciones sirve para describir diversos fenómenos de crecimiento y decrecimiento.

Las aplicaciones de este modelo pueden variar entre crecimiento de una población de bacterias, media-vida (variable que se usa para describir la estabilidad de sustancias radiactivas), pruebas de carbono 14 (para medir qué tan antiguo es un fósil) o incluso para determinar en cuánto tiempo se enfría una torta, sin embargo, durante este curso consideraremos de forma particular la forma en que crece la población de una determinada localidad.

Formalmente, si definimos la variable P(t) para denotar el tamaño de la población en un tiempo t, la forma en que varía el tamaño de la población respecto al tiempo se puede describir calculando la derivada de la variable P respecto al tiempo t, es decir, P'(t) = \frac{dP}{dt}(t).

Para poder emplear este tipo de modelos, debemos suponer que la forma en que varía la población en un instante de tiempo t es proporcional al tamaño de la población en dicho tiempo t, de esta forma, obtenemos la siguiente igualdad

P'(t) = k \cdot P(t)

Notando que esta igualdad representa una ecuación diferencial ordinaria lineal de primer orden homogénea y puede usarse para predecir el tamaño de la población en el futuro, es decir, para algún t>t_{0}. Y sabiendo el tamaño de la población en un punto t_0 entonces podemos definir una ecuación diferencial con problema de valor inicial de la siguiente forma:

P'(t) = k \cdot P(t) \ , \ P(t_{0}) = P_0

Representando la ecuación diferencial de esta forma, la constante de proporcionalidad se puede determinar a partir de la solución con el valor inicial dado.



Ejemplo

Mediante un censo poblacional en el año 1970, el tamaño de la población de una pequeña ciudad fue de aproximadamente 70 000 habitantes. En el censo poblacional del año 2000 se estimó que el tamaño de la población fue de 200 000 habitantes. Considerando que el tamaño de esta población ha crecido de forma proporcional, ¿cuál será el tamaño de la población en el año 2030?

Antes de establecer el modelo que define el crecimiento de esta población, es necesario definir las variables involucradas.

El primer censo se efectuó en el año 1970, entonces consideramos a este como el valor inicial t_{0} = 1970. Sin embargo, para agilizar los cálculos, podemos considerar t_{0} = 0 y así, P_{0} = 70000.

Partiendo del hecho que el tamaño de esta población ha crecido de forma proporcional, planteamos la siguiente ecuación diferencial

P'(t) = k \cdot P(t) \ , \ P(t_0) = P_{0} = 70000

Al ser esta una ecuación de variables separables, procedemos a calcular su solución con el respectivo valor inicial.

P' = k P

\; \Rightarrow \; \frac{dP}{dt} = k P

\; \Rightarrow \; \frac{dP}{P} = k dt

\; \Rightarrow \; \int \frac{dP}{P} = \int k dt

\; \Rightarrow \; \ln(P) = kt + C

\; \Rightarrow \; P = \textit{\Large e}^{kt + C}

\; \Rightarrow \; P = \textit{\Large e}^{kt} \textit{\large e}^{C}

\; \Rightarrow \; P = C \textit{\Large e}^{kt}

Tomando en cuenta que hemos considerado t_{0} = 0, entonces

P_{0} = C \textit{\Large e}^{k \cdot (0)} \; \Rightarrow \; 70000 = C \cdot 1 \; \Rightarrow \; C = 70000

Entonces, la solución de la ecuación diferencial planteada con el problema de valor inicial está dada por

P = 70000 \textit{\Large e}^{kt}

Sin embargo, aún no hemos determinado el valor de la constante de proporcionalidad k. Para esto, debemos recurrir a la otra información aportada en el enunciado del problema.

El segundo censo se efectuó en el año 2000, entonces al haberse efectuado 30 años después consideramos a este como el valor en el trigésimo periodo t_{30} = 2000 y así, P(30) = 200000. De esta forma, podemos plantear la siguiente igualdad

P(30) = 70000 \textit{\Large e}^{kt}

Y a partir de esta igualdad, podemos despejar k.

\; \Rightarrow \; 200000 = 70000 \textit{\Large e}^{k \cdot 30}

\; \Rightarrow \; \frac{200000}{70000} = \textit{\Large e}^{k \cdot 30}

\; \Rightarrow \; 2.8571 = \textit{\Large e}^{k \cdot 30}

\; \Rightarrow \; \ln \left( 2.8571 \right) = k \cdot 30

\; \Rightarrow \; \frac{\ln \left( 2.8571 \right)}{30} = k

\; \Rightarrow \; k \approx 0,03499

De esta forma, la fórmula general para calcular el tamaño de la población está definida de la siguiente forma:

P(t) = 70000 \textit{\Large e}^{0,03499 \cdot t}

Para calcular el tamaño de la población en el año 2030, debemos tomar en cuenta que si el año inicial fue 1970, entonces el año 2030 corresponde al sexagésimo periodo, es decir, t_{60} = 2030. Entonces, evaluamos la función en 60.

P(60) = 70000 \textit{\Large e}^{(0,03499) \cdot (60)} \; \Rightarrow \; P(60) = 571289


Expresión lineal compuesta con una ecuación diferencial

  1. Forma General
    1. Ejemplos
      1. Ejemplo 1

Al observar la forma en que está definida una ecuación diferencial, puede resultar útil identificar los elementos que la componen. Veremos en esta ocasión, el caso en que podemos identificar una expresión lineal que compone la ecuación diferencial.

También pudiera interesarte

Forma General

Veremos que recurriendo a una variable auxiliar, es posible reducir la ecuación diferencial a una ecuación de variables separables. Formalmente, si A, B y C son números reales con B \neq 0, consideraremos ecuaciones diferenciales de la forma

\frac{dy}{dx} = f(Ax + By + C)

Y para calcular la solución de este tipo de ecuaciones, recurrimos a la variable auxiliar u = Ax + By + C. Veamos entonces con algunos ejemplos calcular la solución de este tipo de ecuaciones diferenciales.

Ejemplos

Ejemplo 1

Calcule la solución de la siguiente ecuación diferencial ordinaria

\frac{dy}{dx} = (7x + y + 2)^2 - 11

Podemos notar que la expresión 7x + y + 2 compone a esta ecuación. Entonces, definimos la variable auxiliar que utilizaremos, calculamos \frac{du}{dx} y posteriormente, despejamos \frac{dy}{dx}

u=7x + y + 2 \Rightarrow \frac{du}{dx} = 7 + \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{du}{dx} - 7

De esta forma, al sustituirlas en nuestra ecuación diferencial, obtenemos que

\frac{du}{dx} - 7 = u^2 - 11
\Rightarrow \frac{du}{dx} - 7 = u^2 - 11
\Rightarrow \frac{du}{dx} = u^2 - 4
\Rightarrow \frac{du}{dx} = (u-2)(u+2)

Esta última igualdad representa una ecuación diferencial de variables separables, así que procedemos a separar las variables.

\frac{du}{dx} = (u-2)(u+2)

\Rightarrow \frac{du}{(u-2)(u+2)} = dx

Una vez separadas las variables, integramos en ambos lados de la ecuación.

\Rightarrow \int \frac{du}{(u-2)(u+2)} = \int dx

\Rightarrow \frac{1}{4} \ln(u-2) - \frac{1}{4} \ln(u+2) = x + C

Ya que hemos calculado las integrales, debemos despejar al variable u.

\Rightarrow \frac{1}{4} \left( \ln(u-2) - \ln(u+2) \right) = x + C

\Rightarrow \frac{1}{4} \ln \left(\frac{u-2}{u+2} \right) = x + C

\Rightarrow \ln \left(\frac{u-2}{u+2} \right) = 4x + C

\Rightarrow \frac{u-2}{u+2} = C \textit{\Large e}^{4x}

\Rightarrow u-2 = C \textit{\Large e}^{4x}(u+2)

\Rightarrow u-2 = C \textit{\Large e}^{4x}u+2C \textit{\Large e}^{4x}

\Rightarrow u- C \textit{\Large e}^{4x}u = 2+2C \textit{\Large e}^{4x}

\Rightarrow u \left( 1-C \textit{\Large e}^{4x} \right) = 2 (C \textit{\Large e}^{4x} + 1)

\Rightarrow u = \frac{2 \left( 1+C \textit{\Large e}^{4x} \right) }{\left( 1-C \textit{\Large e}^{4x} \right)}

Finalmente, sustituimos la variable auxiliar u y despejamos la variable y.

u = 2 \frac{\left( 1+C \textit{\Large e}^{4x} \right) }{\left( 1-C \textit{\Large e}^{4x} \right)}

\Rightarrow 7x + y + 2 = 2\frac{\left( 1+C \textit{\Large e}^{4x} \right) }{\left( 1-C \textit{\Large e}^{4x} \right) }

\Rightarrow y = 2\frac{\left((1+C \textit{\Large e}^{4x} \right) }{\left(1-C \textit{\Large e}^{4x} \right)} -7x - 2


Ecuaciones de Bernoulli

  1. Forma General de una Ecuación de Bernoulli
    1. Ejemplos
      1. Ejemplo 1

Hemos visto que una ecuación expresada de la forma \frac{dy}{dx} + P(x)y= f(x) es una ecuación diferencial ordinaria lineal de primer orden no-homogénea y la solución de este tipo de ecuaciones se puede calcular usando el factor integrante.

También podemos notar que si la ecuación diferencial está expresada de la forma \frac{dy}{dx} + P(x)y= f(x)y, se puede reescribir como una ecuación diferencial ordinaria lineal de primer orden homogénea \frac{dy}{dx} + \big( P(x) - f(x) \big) y= 0 y en consecuencia se puede calcular su solución separando las variables.

Veamos a continuación, que este tipo de ecuaciones diferenciales se puede generalizar con el fin de desarrollar un método que nos permita calcular la solución.

También pudiera interesarte

Forma General de una Ecuación de Bernoulli

Para cualquier número natural n, diremos que una Ecuación de Bernoulli es una ecuación diferencial ordinaria no lineal expresada de la siguiente forma

\displaystyle \frac{dy}{dx} + P(x)y= f(x)y^n

Los casos para los cuales n=0 y n=1 fueron los nombrados en la introducción de esta sección. Así que veremos a continuación, el caso en el que n \geq 2. Podemos calcular la solución de este tipo de ecuaciones usando recurriendo a la variable auxiliar

u=y^{1-n}

De esta forma reducimos la ecuación a una ecuación diferencial ordinaria lineal no-homogénea. Veamos con algunos ejemplos calcular la solución de este tipo de ecuaciones diferenciales.

Ejemplos

Ejemplo 1

Calcule la solución de la siguiente ecuación diferencial ordinaria

3x\frac{dy}{dx} + 6y = 12xy^2

Lo primero que debemos hacer es estandarizar la ecuación diferencial y para esto dividimos cada uno de los sumandos involucrados por 3x para obtener

\frac{dy}{dx} + \frac{2}{x}y = 4y^2

Una vez estandarizada la ecuación diferencial, recurrimos a la variable auxiliar u=y^{1-n} que en este caso, n=2, por lo tango estará expresada como u=y^{-1} de donde podemos despejar y elevando a -1 y de forma general, para hacer este despeje, se eleva a \frac{1}{1-n} ambos lados de la ecuación para obtener que

y=u^{-1}

Será necesario calcular el diferencial de y, así que usando la regla de la cadena concluimos que

\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = -u^{-2} \frac{du}{dx}

Entonces, sustituimos y y \frac{dy}{dx} en la ecuación diferencial

\frac{dy}{dx} + \frac{2}{x}y = 4y^2

\; \Rightarrow \; \left( -u^{-2} \frac{du}{dx} \right) + \frac{2}{x} \left( u^{-1} \right) = 4 \left( u^{-1} \right)^2

\; \Rightarrow \; -u^{-2} \frac{du}{dx} + \frac{2}{x}u^{-1} = 4u^{-2}

Posteriormente, estandarizamos esta nueva expresión dividiendo cada uno de los sumandos por -u^{-2} y así, reescribimos la nueva ecuación como una ecuación diferencial ordinaria lineal no-homogénea

\frac{du}{dx} - \frac{2}{x}u = -4

Identificamos la función P(x) que nos permite calcular el factor integrante de la siguiente manera

P(x) = - \frac{2}{x} \Rightarrow \rho(x) = \textit{\Large e}^{\int - \frac{2}{x}} = x^{-2}

Entonces, calculamos la solución de la ecuación diferencial

\frac{du}{dx} - \frac{2}{x}u = -4

\; \Rightarrow \; x^{-2}\frac{du}{dx} - x^{-2}\frac{2}{x}u = -4x^{-2}

\; \Rightarrow \; \frac{x^{-2} u}{dx} = -4x^{-2}

\; \Rightarrow \; \int \frac{x^{-2} u}{dx} = \int -4x^{-2}

\; \Rightarrow \; x^{-2} u = \frac{4}{x} + C

\; \Rightarrow \; u = 4x + Cx^2

Finalmente, ya que hemos expresado la variable auxiliar u en función de x, volvemos a sustituirla para obtener y

y^{-1} = 4x + Cx^2 \Rightarrow y = \frac{1}{4x + Cx^2}


Ecuaciones Homogéneas de grado alpha ⍺

Funciones Homogéneas de grado alpha ⍺

Las ecuaciones diferenciales que veremos a continuación se pueden reescribir como ecuaciones diferenciales de variables separables luego de recurrir a una variable auxiliar, sin embargo, debemos verificar primero que cumplan con una condición. Definamos entonces los elementos que determinarán el criterio para poder calcular su solución.

También pudiera interesarte

Decimos que una función f(x,y) es una función homogénea de grado \alpha si para algún número real \alpha se satisface las siguiente igualdad:

f(t \cdot x,t \cdot y)=t^{\alpha} \cdot f(x,y)

Veamos algunos ejemplos de este tipo de funciones para entender esta idea.

Ejemplos

Ejemplo 1

Verifique si la función que se presenta a continuación es una función homogénea de grado \alpha:

f(x,y) = x^2 - y^2

Para esto, evaluamos la función f en el punto (tx,ty) y manipulamos algebraicamente con el fin de sacar la forma t^{\alpha} como un factor común.

f(tx,ty)

\; = \; (tx)^2 - (ty)^2
\; = \; t^2x^2 - t^2y^2
\; = \; t^2(x^2 - y^2)
\; = \; t^2 f(x,y)

En este caso, decimos que la función f es una función homogénea de grado 2.

Ejemplo 2

Verifique si la función que se presenta a continuación es una función homogénea de grado \alpha:

f(x,y) = x^2 + xy

Para esto, evaluamos la función f en el punto (tx,ty) y manipulamos algebraicamente con el fin de sacar la forma t^{\alpha} como un factor común.

f(tx,ty)

\; = \; (tx)^2 + (tx)(ty)
\; = \; t^2x^2 + t^2xy
\; = \; t^2(x^2 + xy)
\; = \; t^2 f(x,y)

En este caso, decimos que la función f es una función homogénea de grado 2.

Ejemplo 3

Verifique si la función que se presenta a continuación es una función homogénea de grado \alpha:

f(x,y) = 4 x^2y^5 - 9x^4y^3

Para esto, evaluamos la función f en el punto (tx,ty) y manipulamos algebraicamente con el fin de sacar la forma t^{\alpha} como un factor común.

f(tx,ty)

\; = \; 4 (tx)^2(ty)^5 - 9(tx)^4(ty)^3
\; = \; 4(t^2x^2)(t^5y^5) - 9(t^4x^4)(t^3y^3)
\; = \; 4t^7x^2y^5 - 9t^7x^4y^3
\; = \; t^7(4x^2y^5 - 9x^4y^3)
\; = \; t^7 f(x,y)

En este caso, decimos que la función f es una función homogénea de grado 7.

Ejemplo 4

Verifique si la función que se presenta a continuación es una función homogénea de grado \alpha:

f(x,y) = 6 xy^3 + 5x^4 + 17

Para esto, evaluamos la función f en el punto (tx,ty) y manipulamos algebraicamente con el fin de sacar la forma t^{\alpha} como un factor común.

f(tx,ty)

\; = \; 6 (tx)(ty)^3 + 5(tx)^4 + 17
\; = \; 6 (tx)(t^3y^3) + 5(t^4x^4) + 17
\; = \; 6 t^4xy^3 + 5 t^4x^4 + 17

En este caso, no es posible sacar t^4 como un factor común y en consecuencia, la función f no se puede expresar de la forma t^{\alpha} f(x,y), por lo tango, no es una función homogénea de grado \alpha.




Ecuaciones Homogéneas de grado alpha ⍺

Al considerar la ecuación diferencial M(x, y) dx + N(x, y) dy = 0, hemos podido clasificar algunas ecuaciones de esta forma como Ecuaciones Exactas y aunque hemos encontrado otras no exactas, se han podido reducir a ecuaciones exactas, sin embargo, no siempre podemos aplicar ese método establecido en estos casos.

Entonces, debemos establecer una nueva forma de clasificar este tipo de ecuaciones. Formalmente, si consideramos una ecuación diferencial expresada de la siguiente forma:

M(x, y) dx + N(x, y) dy = 0

Decimos que esta es una ecuación homogénea de grado \alpha si las funciones M(x,y) y N(x,y) son funciones de homogéneas de grado \alpha.

Si M(x, y) dx + N(x, y) dy = 0 es una ecuación diferencial ordinaria homogénea de grado \alpha, será posible reducir esta ecuación a una ecuación diferencial homogénea de variables separables recurriendo a una de las siguientes variables auxiliares para efectuar una sustitución de variable

u=\frac{y}{x} \ \text{ o } \ v=\frac{x}{y}

Notando que podemos reescribir estas dos expresiones respectivamente de la siguiente forma:

y = ux \ \text{ o } \ x = vy

Veamos entonces con algunos ejemplos calcular la solución de este tipo de ecuaciones diferenciales.

Ejemplos

Ejemplo 5

Calcule la solución de la siguiente ecuación diferencial ordinaria

(x^2-2y^2)dx + (2x^2+3xy)dy = 0

Debemos recurrir a una sustitución de variable para reducirla a una ecuación diferencial de variables separables, pero antes es necesario verificar que las funciones M(x,y) = (x^2-2y^2) y N(x,y) = (2x^2+3xy) son ambas funciones homogéneas de grado \alpha.

M(tx,ty)

\; = \; (tx)^2-2(ty)^2
\; = \; t^2x^2-2t^2y^2
\; = \; t^2(x^2-2y^2)
\; = \; t^2 M(x,y)

N(tx,ty)

\; = \; 2(tx)^2+3(tx)(ty)
\; = \; 2t^2x^2+3t^2xy
\; = \; t^2(2x^2+3xy)
\; = \; t^2 N(x,y)

Habiendo verificado que M(x,y) y N(x,y) son ambas funciones homogéneas de grado 2, podemos recurrir a la siguiente variable auxiliar

u=\frac{y}{x} \Rightarrow y=ux

De esta forma, podemos sustituirla en nuestra ecuación diferencial. Notemos también, que si queremos hacer esta sustitución, debemos calcular el diferencial dy

dy = udx + xdu

Entonces, sustituimos los elementos y y dy en la ecuación diferencial.

(x^2-2y^2)dx + (2x^2+3xy)dy = 0

\Rightarrow \big( x^2-2(ux)^2 \big)dx + \big( 2x^2+3x(ux) \big)( udx + xdu) = 0

Una vez que hemos hecho la sustitución de las variables, manipulamos algebraicamente las expresiones que definen la ecuación diferencial con el fin de separar las variables.

( x^2-2u^2x^2 )dx + ( 2x^2+3x^2u)( udx + xdu) = 0

\; \Rightarrow \; ( x^2-2u^2x^2 )dx + ( 2x^2+3x^2u )udx + \big( 2x^2+3x^2u \big)xdu = 0

\; \Rightarrow \; ( x^2-2u^2x^2 )dx + ( 2x^2u+3x^2u^2 )dx + ( 2x^3+3x^3u )du = 0

\; \Rightarrow \; ( x^2-2u^2x^2 + 2x^2u+3x^2u^2 )dx + (2+3u ) x^3 du = 0

\; \Rightarrow \; ( 1 -2u^2 + 2u + 3u^2 ) x^2 dx + (2+3u ) x^3 du = 0

\; \Rightarrow \; ( 1 + 2u + u^2 ) x^2 dx + (2+3u ) x^3 du = 0

\; \Rightarrow \; ( 1 + 2u + u^2 ) x^2 dx = - (2+3u ) x^3 du

\; \Rightarrow \; \frac{x^2}{x^3}dx = -\frac{(2+3u )}{( 1 + 2u + u^2 )} du

\; \Rightarrow \; \frac{1}{x}dx = -\frac{(2+3u )}{( 1 + u )^2} du

Ya que las variables están separadas, procedemos a calcular las respectivas integrales notando que la integral del lado derecho, es decir, -\frac{(2+3u )}{( 1 + u )^2}; debe calcularse usando el método de las fracciones simples. Entonces,

\int -\frac{(2+3u )}{( 1 + u )^2} du = \int \frac{1}{x}dx

\; \Rightarrow \; -\frac{1}{1+u} - 3\ln(1+u) = ln(x) + c

\; \Rightarrow \; \frac{1}{1+u} + 3\ln(1+u) + ln(x) = c

Finalmente, sustituimos la variable u y obtenemos la solución general de la ecuación diferencial que viene expresada de forma implícita como

\frac{1}{1+\frac{y}{x}} + 3\ln \left(1+\frac{y}{x} \right) + \ln(x) = c