Derivada de la función inversa

Al estudiar el comportamiento gráfico de una función y de su inversa, podemos notar que estas están reflejadas a través de la recta identidad, tomando esto en cuenta, pudiéramos determinar la derivada de la inversa de una función a partir de la derivada de la función original, pero, ¿de qué forma?

También pudiera interesarte

Anuncios

Si estudiamos gráficamente la derivada de la función cuadrática, f(x)=x^2, en el punto x=1, sabemos que esta define la pendiente de la recta tangente a la curva en el punto (1,1). Esta pendiente es igual a 2.

Derivada de la función inversa | totumat.com

Por otra parte, si estudiamos gráficamente la derivada de la función raíz cuadrada, f^{-1}(x)=\sqrt{x}, en el punto x=1, esta define la pendiente de la recta tangente a la curva en el punto (1,1). Esta pendiente es igual a \frac{1}{2}.

Derivada de la función inversa | totumat.com

Debemos notar que la función cuadrática y la función raíz cuadrada son funciones inversas, y el resultado de cada una de sus derivadas, 2 y \frac{1}{2}, son inversamente proporcionales. Más aún, las rectas tangentes a ambas funciones en el punto (1,1) parecieran ser una reflexión de la otra a través de la recta identidad, esto se puede apreciar mejor en el siguiente gráfico:

Derivada de la función inversa | totumat.com

Esto sugiere que sus derivadas son inversamente proporcionales, para ser más precisos, la derivada de la función inversa de f evaluada en y_0 es inversamente proporcional a la derivada de la función f en la preimagen de y_0. Esta idea se presenta formalmente con el siguiente teorema:

Anuncios

Teorema (La derivada de la función inversa)

Sea f : (a,b) \longrightarrow \mathbb{R} una función inyectiva, derivable en un punto x_0=f^{-1}(y_0) del intervalo (a,b), tal que f'(f^{-1}(y_0)) \neq 0. Entonces, f^{-1} es derivable en y_0 y además,

(f^{-1})'(y_0) = \dfrac{1}{f'\big( f^{-1}(y_0) \big)}

Podemos presentar esta última expresión de una forma más amigable, y es que si consideramos una variable x=f^{-1}(y), podemos reescribir la derivada de la variable x respecto a la variable y como un cociente de diferenciales de la siguiente forma:

(f^{-1})'(y) = \frac{d}{dy} \left( f^{-1}(y) \right) = \frac{dx}{dy}

Por otra parte, también podemos reescribir la derivada f'\left( f^{-1}(y) \right) como un cociente de diferenciales, tomando en cuenta que f y f^{-1} son funciones inversas, de la siguiente forma:

f'\left( f^{-1}(y) \right) = \frac{d}{dx} \left( f\left( f^{-1}(y) \right) \right) = \frac{dy}{dx}

Entonces, aplicando el teorema para calcular la derivada de la función inversa, tenemos que

\dfrac{dx}{dy} = \dfrac{ \ \ 1 \ \ }{\dfrac{dy}{dx}}

Notemos que esta última expresión es equivalente a \frac{dy}{dx} = \frac{ \ \ 1 \ \ }{\frac{dx}{dy}} y aunque este teorema es potente para el desarrollo de las matemáticas, existen algunos casos en la práctica donde resulta útil. Veamos en los siguientes ejemplos, algunas funciones para entender como calcular la función inversa usando este el teorema.

Anuncios

Ejemplos

Ejemplo 1

Considerando la función f(x)=x^2, calcule la derivada de su función inversa f^{-1}(x)=\sqrt{x}.

Debemos tomar en cuenta que la derivada de la función f(x) es igual a f'(x)=2x. Al evaluar la derivada en f^{-1}(x), obtenemos la expresión

f' \left( f^{-1}(x) \right) = 2 \cdot f^{-1}(x)

Entonces, procedemos a calcular la derivada de la función inversa aplicando el teorema de la siguiente forma:

(f^{-1})'(x) = \dfrac{1}{f'(f^{-1}(x))}

= \dfrac{1}{2f^{-1}(x)}

= \dfrac{1}{2\sqrt{x}}

Ejemplo 2

Considerando la función f(x)=(x+1)^3, calcule la derivada de su función inversa f^{-1}(x)=\sqrt[3]{x}-1.

Debemos tomar en cuenta que la derivada de la función f(x) es igual a f'(x)=3(x+1)^2. Al evaluar la derivada en f^{-1}(x), obtenemos la expresión

f' \left( f^{-1}(x) \right) = 3\left( f^{-1}(x) + 1 \right)^2

Entonces, procedemos a calcular la derivada de la función inversa aplicando el teorema de la siguiente forma:

(f^{-1})'(x) = \dfrac{1}{f'(f^{-1}(x))}

= \dfrac{1}{3\left( f^{-1}(x) + 1 \right)^2}

= \dfrac{1}{3\left( \sqrt[3]{x}-1 + 1 \right)^2}

= \dfrac{1}{3\left( \sqrt[3]{x} \right)^2}

Anuncios

Ejemplo 3

Expresando la derivada como un cociente de diferenciales también podemos llevar a cabo el procedimiento al estudiar variables dependientes, considerando la variable y=-2x+5, calcule la derivada de su función inversa x=-\frac{1}{2}y + \frac{5}{2}.

Debemos tomar en cuenta que la derivada de y respecto a la variable x es igual a \frac{dy}{dx}=-2, de esta forma, procedemos a calcular la derivada de la función inversa aplicando el teorema de la siguiente forma:

\dfrac{dx}{dy} = \dfrac{1}{\frac{dy}{dx}}

= \dfrac{1}{-2}

= -\dfrac{1}{2}

Ejemplo 4

Expresando la derivada como un cociente de diferenciales también podemos llevar a cabo el procedimiento al estudiar variables dependientes, considerando la variable y=\textit{\Large e}^{x+1} + 7, calcule la derivada de su función inversa x= \ln(y-7) - 1.

Debemos tomar en cuenta que la derivada de y respecto a la variable x es igual a \frac{dy}{dx}=\textit{\Large e}^{x+1}, de esta forma, procedemos a calcular la derivada de la función inversa aplicando el teorema de la siguiente forma:

\dfrac{dx}{dy} = \dfrac{1}{\frac{dy}{dx}}

= \dfrac{1}{\textit{\Large e}^{x+1}}

Finalmente, sustituyendo la variable x = \ln(y-7) - 1 en este último resultado, obtenemos lo siguiente:

\dfrac{dx}{dy} = \dfrac{1}{\textit{\Large e}^{\ln(y-7) - 1+1}}

= \dfrac{1}{\textit{\Large e}^{\ln(y-7)}}

= \dfrac{1}{y-7}

Nota: Se mantiene que \textit{\Large e}^{\ln(y-7)} = y-7 pues la función exponencial y la función logaritmo neperiano son funciones inversas.


Anuncio publicitario

¿Tienes alguna duda? Compártela en los comentarios.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.