Si y
son dos funciones cuyos límites tienden a infinito cuando
tiende al infinito, entonces el límite de la resta entre estas dos funciones presenta una indeterminación. Para entender como determinar este tipo de límites debemos considerar el grado de las funciones involucradas pues el crecimiento de la función de mayor grado predominará sobre el crecimiento de las funciones de menor grado en el infinito, de esta forma determinamos este tipo de límite de la siguiente manera
Ejemplos
Ejemplo 1
Si consideramos , este presenta una indeterminación pero al ser
el mayor grado, entonces tenemos que
Ejemplo 2
Si consideramos , este presenta una indeterminación pero al ser
el mayor grado, entonces tenemos que
Ejemplo 3
Si consideramos , este presenta una indeterminación pero al ser
el mayor grado, entonces tenemos que
Ejemplo 4
Si consideramos , este presenta una indeterminación pero al ser función exponencial de mayor grado, entonces tenemos que
Ejemplo 5
Si consideramos , este presenta una indeterminación pero al ser
el mayor grado, entonces tenemos que
Estos ejemplos no presentan mayor dificultad para determinarlos debido a que la diferencia entre los grados es clara, así que consideraremos otros ejemplos en los que el grado de las funciones es el mismo. Veamos cuales son las técnicas para determinarlos.
Límite que involucra una función radical
Si consideramos , este límite presenta una indeterminación. Para determinar este tipo de límites, debemos notar que el \emph{conflicto} es generado por la resta entre cada elemento de la función. Consideremos el conjugado de esta expresión
para multiplicar y dividir por la función, entonces
Al multiplicar la expresión por su conjugado obtenemos una diferencia de cuadrados, así que el límite se reescribe de la siguiente forma
Posteriormente simplificamos y efectuamos las operaciones en el numerador para obtener
Una vez que evaluamos el límite tenemos que
Por lo tanto, concluimos que
Límite que involucra una función exponencial
Si consideramos , este límite presenta una indeterminación. Para determinar este tipo de límites, debemos recurrir a las propiedades de las potencias y notar que
y
, de esta el límite será igual a
Notando además, que , obtenemos
Por lo tanto, al evaluar el límite tenemos que
Por lo tanto, concluimos que
Límite que involucra una función logarítmica
Si consideramos , este límite presenta una indeterminación. Para determinar este tipo de límites, debemos recurrir a las propiedades de los logaritmos y notar que
, de esta el límite será igual a
Si nos fijamos que el cociente que está dentro de logaritmo es un cociente de polinomios del mismo grado, entonces su límite será igual a la división entre sus coeficientes principales, de esta forma, el límite de este cociente es igual , por lo tanto concluimos que
[…] Indeterminación infinito menos infinito ∞-∞ […]
Me gustaMe gusta