Operaciones en el infinito

Así como hemos podido definir límites finitos de las operaciones básicas entre funciones separando los límites, también será posible definir las operaciones básicas entre límites infinitos teniendo algunas consideraciones. Si f(x) y g(x) son dos funciones cuyos límites tienden a infinito cuando x tiende al infinito; a(x) y b(x) dos funciones que tienden a a_0 \neq 0 y a cero respectivamente cuando x tiende a infinito; entonces consideremos las siguientes operaciones

Suma

constante más infinito
infinito más infinito
infinito menos infinito
constante más infinito, infinito más infinito, infinito menos infinito

La resta de infinitos será indeterminada, porque aunque la noción de infinito se usa para denotar números muy grandes, no necesariamente representan el mismo número. También hay que considerar que hay funciones que crecen de forma distinta respecto a otras, por lo que al considerar la resta entre ellas, hay que estudiar cual de las dos crece con mayor rapidez.

Producto

constante por infinito
cero por infinito
infinito por infinito
infinito a la n
constante por infinito, cero por infinito, infinito por infinito, infinito a la n

El producto de cero por infinito será indeterminado. Hay que considerar que hay funciones que crecen o decrecen de forma distinta respecto a otras, por lo que al considerar el producto entre ellas, hay que estudiar cual de las dos crece o decrece con mayor rapidez.

División

constante entre infinito
constante entre cero
infinito entre constante
infinito entre infinito
cero entre infinito
infinito entre cero
constante entre infinito, constante entre cero, infinito entre constante, infinito entre infinito, cero entre infinito, infinito entre cero

La división entre infinitos será indeterminada, porque aunque la noción de infinito se usa para denotar números muy grandes, no necesariamente representan el mismo número. También hay que considerar que hay funciones que crecen de forma distinta respecto a otras, por lo que al considerar la división entre ellas, hay que estudiar cual de las dos crece con mayor rapidez. De igual forma, la división de cero entre infinito o infinito entre cero será indeterminada pues se debe considerar que hay funciones que crecen o decrecen de forma distinta respecto a otras, por lo que al considerar la división entre ellas, hay que estudiar cual de las dos crece o decrece con mayor rapidez.

Potencias

Intuitivamente lo que ocurre es que si se multiplica un número mayor que uno por él mismo de forma indefinida, este producto tenderá hacia al infinito; si se multiplica un número mayor que uno por él mismo de forma indefinida de forma indefinida, este producto tenderá hacia cero; si se multiplica el número uno por él mismo de forma indefinida, este producto será siempre igual a uno. Pero cuando una expresión tiende a uno se multiplica por ella misma de forma indefinida, ¿hacia donde tiende? ¿A cero? ¿A uno? ¿A infinito?

De esta lista de operaciones, se han etiquetado con (IND) los límites indeterminados, más adelante veremos cuales son las técnicas para determinarlos. Por ahora, veamos con algunos ejemplos como calcular este tipo de límites infinitos que no presentan problemas de determinación.

Ejemplos

Ejemplo 1

Considere la función f(x) = x + 5, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} x + 5 = \infty + 5 = \infty

Ejemplo 2

Considere la función f(x) = 3x^2 - 12, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} 3x^2 - 12 = 3 \cdot (\infty)^2 - 12 = 3 \cdot \infty - 12 = \infty - 12 = \infty

Ejemplo 3

Considere la función f(x) = 3x^2 - 12, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} 4x^3 + 6(x-14)^2 + 9 = 4(\infty)^3 + 6(\infty)^2 + 9 = 4 \cdot \infty + 6 \cdot \infty + 9 = \infty

Ejemplo 4

Considere la función f(x) = \frac{1}{x} - \frac{3}{x} + 7, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} \frac{1}{x} - \frac{3}{x+1} + 7 = \frac{1}{\infty} - \frac{3}{\infty} + 7 = 0 + 0+ 7 = 7

Ejemplo 5

Considere la función f(x) = \frac{1}{x} - \frac{3}{x} + 7, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} \sqrt{x} + \frac{11}{4x} + \sqrt[5]{x+3} = \sqrt{\infty} + \frac{11}{4 \cdot \infty} + \sqrt[5]{\infty+3} = \infty + 0 + \infty = \infty

Ejemplo 6

Considere la función f(x) = (x+2)^{x^2-6}, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} (x+2)^{x^2-6} = (\infty+2)^{\infty^2-6}  = \infty^{\infty} = \infty


¿Tiendes dudas? ¿Requieres más ejemplos? No dudes en escribir.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios .