Así como hemos podido definir límites finitos de las operaciones básicas entre funciones separando los límites, también será posible definir las operaciones básicas entre límites infinitos teniendo algunas consideraciones. Si y
son dos funciones cuyos límites tienden a infinito cuando
tiende al infinito;
es una función que tiende a la constante
cuando
tiende a infinito y
es una función que tiende cero cuando
tiende a infinito; entonces veamos qué indeterminaciones conseguimos al considerar las siguientes operaciones:
También pudiera interesarte
Suma
La resta de infinitos está indeterminada, porque aunque la noción de infinito se usa para denotar números muy grandes, no necesariamente representan el mismo número. También hay que considerar que hay funciones que crecen de forma distinta respecto a otras, por lo que al considerar la resta entre ellas, hay que estudiar cual de las dos crece con mayor rapidez.
Producto
El producto de cero por infinito está indeterminado. Hay que considerar que hay funciones que crecen o decrecen de forma distinta respecto a otras, por lo que al considerar el producto entre ellas, hay que estudiar cual de las dos crece o decrece con mayor rapidez.
División
La división entre infinitos está indeterminada, porque aunque la noción de infinito se usa para denotar números muy grandes, no necesariamente representan el mismo número. También hay que considerar que hay funciones que crecen de forma distinta respecto a otras, por lo que al considerar la división entre ellas, hay que estudiar cual de las dos crece con mayor rapidez. De igual forma, la división de cero entre infinito o infinito entre cero está indeterminada pues se debe considerar que hay funciones que crecen o decrecen de forma distinta respecto a otras, por lo que al considerar la división entre ellas, hay que estudiar cual de las dos crece o decrece con mayor rapidez.
Potencias
La expresión uno a la infinito está indeterminada, la expresión infinito a la cero está indeterminada, la expresión cero a la infinito está indeterminada, intuitivamente lo que ocurre es que si se multiplica un número mayor que uno por él mismo de forma indefinida, este producto tenderá hacia al infinito; si se multiplica un número mayor que uno por él mismo de forma indefinida de forma indefinida, este producto tenderá hacia cero; si se multiplica el número uno por él mismo de forma indefinida, este producto será siempre igual a uno. Pero cuando una expresión tiende a uno se multiplica por ella misma de forma indefinida, ¿hacia donde tiende? ¿A cero? ¿A uno? ¿A infinito?
De esta lista de operaciones, se han etiquetado con (IND) los límites indeterminados, más adelante veremos cuales son las técnicas para determinarlos. Por ahora, veamos con algunos ejemplos como calcular este tipo de límites infinitos que no presentan problemas de determinación.
Ejemplos
Ejemplo 1
Considere la función , calcule su límite cuando
tiende a infinito.
Ejemplo 2
Considere la función , calcule su límite cuando
tiende a infinito.
Ejemplo 3
Considere la función , calcule su límite cuando
tiende a infinito.
Ejemplo 4
Considere la función , calcule su límite cuando
tiende a infinito.
Ejemplo 5
Considere la función , calcule su límite cuando
tiende a infinito.
Ejemplo 6
Considere la función , calcule su límite cuando
tiende a infinito.

[…] el límite cuando al evaluar la función en cuestión, obtenemos indeterminaciones de la forma cero sobre cero o infinito sobre infinito. Esto es lo que expone u/Krzug en la siguiente […]
Me gustaMe gusta