Vimos que al considerar el cociente entre polinomios cuando la variable tiende infinito, se puede determinar el límite considerando el grado de los polinomios. Esta situación se puede generalizar para cualquier cociente entre funciones considerando el grado de ambas funciones. Veamos entonces con los siguientes ejemplos como determinar este tipo de límites.
También pudiera interesarte
Ejemplos
Ejemplo 1
Si consideramos , este límite presenta una indeterminación pero considerando que el grado de la función en el numerador es igual a
y el grado del denominador es igual a
entonces
Ejemplo 2
Si consideramos , este límite presenta una indeterminación pero considerando que el grado de la función en el numerador es exponencial y el grado del denominador es igual a
entonces
Ejemplo 3
Si consideramos , este límite presenta una indeterminación pero considerando que el grado de la función en el numerador es igual a 1 y el grado del denominador es logarítmico entonces
¿Y si el grado es el mismo?
Si bien estos ejemplos no presentan mayor complicación para determinarlos debido a que la diferencia entre los grados es clara, vale la pena considerar otros ejemplos en los que el grado de las funciones es el mismo. La técnica no será muy distinta a la que usamos para determinar los límites de cocientes entre polinomios pues dividiremos siempre el numerador y el denominador por la función elemental de mayor grado involucrada en el límite.
Límite que involucra una función radical
Si consideramos , este límite presenta una indeterminación pero considerando que el grado en ambos miembros de la fracción es
, entonces dividimos el numerador y el denominador por
Una vez que hemos dividido, separamos la suma en los numeradores de cada fracción de la siguiente forma
Notamos además, que podemos combinar las raíces cuadradas de la siguiente manera
Simplificamos entonces cada una de las fracciones generadas de la misma forma que las hemos simplificado anteriormente, para obtener
Calculamos entonces el límite de cada uno de las expresiones involucradas, teniendo en cuenta que y
(con
), así el límite será igual a
Por lo tanto concluimos que
Al considerar funciones algebraicas es más intuitiva la simplificación de las expresiones, sin embargo, al considerar funciones trascendentales esta simplificación no es tan obvia, es por eso que en los siguientes ejemplos veremos algunos casos donde podemos determinar los límites de forma intuitiva.
Límite que involucra una función exponencial
Si consideramos , este límite presenta una indeterminación pero considerando que el grado en ambos miembros de la fracción es exponencial, entonces dividimos el numerador y el denominador por
Una vez que hemos dividido, separamos la suma en los numeradores de cada fracción de la siguiente forma
Simplificamos entonces cada una de las fracciones generadas, para obtener
Calculamos entonces el límite de cada uno de los sumandos involucrados, teniendo en cuenta que (con
),
y
, así el límite será igual a
Por lo tanto concluimos que
Límite que involucra una función logarítmica
Si consideramos , este límite presenta una indeterminación pero considerando que el grado en ambos miembros de la fracción es exponencial, entonces dividimos el numerador y el denominador por
Una vez que hemos dividido, separamos la suma en los numeradores de cada fracción de la siguiente forma
Simplificamos entonces cada una de las fracciones generadas, para obtener
Calculamos entonces el límite de cada uno de los sumandos involucrados, teniendo en cuenta que (con
), así el límite será igual a
Por lo tanto concluimos que