Interacción entre dos rectas

Al considerar dos rectas l_1 : y = m_1 x + b_1 y l_2 : y = m_2 x + b_2 podemos establecer dos tipos de interacciones entre ellas recordando que las rectas en realidad definen conjuntos en el plano cartesiano, consideremos los dos casos posibles:

Diremos que dos rectas son paralelas si no tienen ningún elemento en común, es decir, la intersección entre ambas es el conjunto vacío. Al considerar las ecuaciones que las definen, diremos que dos rectas son paralelas si sus pendientes son iguales, es decir, m_1 = m_2. Gráficamente, tenemos que:

dos rectas que nunca se encuentran

Por otra parte, diremos que dos rectas se intersectan (en algunos textos se dice intersecan, sin embargo, al hablar de las rectas como de conjuntos usaremos la palabra intersectan) si tienen exactamente un elemento en común, es decir, la intersección entre ambas es un solo punto. Al considerar las ecuaciones que las definen, diremos que dos rectas se intersectan si sus pendientes son diferentes, es decir, m_1 \neq m_2. Gráficamente, tenemos que:

dos rectas que se encuentran una sola vez

Más aún, diremos que dos rectas que se intersectan son perpendiculares si éstas forman un ángulo recto, es decir, un ángulo de 90 grados. Al considerar las ecuaciones que las definen, diremos que dos rectas son perpendiculares si el producto de sus pendientes es igual a -1, es decir, m_1 \cdot m_2 = -1. Gráficamente, tenemos que:

dos rectas que se encuentran perpendicularmente

Considerando este tipo de interacciones, veamos algunos ejemplos en los que la información de una recta puede ser usada para calcular la ecuación de otra sabiendo como se relacionan estas dos.

Ejemplo 1

Calcule la ecuación de la recta l_1 que pasa por el punto P_0 = (1,4) y es paralela al la recta l_2 : y = -2x -2

Al observar la ecuación de la recta l_1 podemos identificar inmediatamente su pendiente que es m_2 = -2, entonces, al ser l_1 y l_2 rectas paralelas, la pendiente m_1 = m_2 = -2.

Luego, al aplicar la ecuación punto-pendiente, tenemos que calcular la ecuación de la recta que pasa por el punto (1,4) y tiene pendiente m_1 = -2.

(y - y_0) = m_1 \cdot (x - x_0)
\Rightarrow \ (y - 4) = -2 \cdot (x - 1)
\Rightarrow \ y - 4 = -2x - 1
\Rightarrow \ y = -2x + 3

Concluimos entonces que la ecuación de la recta l_1 es y = -2x + 3 y para determinar su gráfica, calcularemos los puntos de corte de la recta con los ejes. Entonces,

x= 0 \Rightarrow \ y = -2(0) + 3 \Rightarrow \ y = 3

Es decir, el punto de corte con el Eje Y es (0,3)

y= 0 \Rightarrow \ 0 = -2x + 3 \Rightarrow \ 2x = 3 \Rightarrow \ x = \frac{3}{2}

Es decir, el punto de corte con el Eje X es \left( \frac{3}{2},0 \right)

Ejemplo 2

Calcule la ecuación de la recta l_1 que pasa por el punto P_0 = (2,-3) y es perpendicular a la recta l_2 : y = 3x + 1

Al observar la ecuación de la recta l_2 podemos identificar inmediatamente su pendiente que es m_2 = 3, entonces, al ser l_1 y l_2 rectas perpendiculares, tenemos que el producto de las pendientes m_1 \cdot m_2 = -1. Sabiendo esto, despejamos la pendiente que estamos buscando:

m_1 \cdot 3 = -1 \Rightarrow \ m_1 = -\frac{1}{3}

Luego, al aplicar la ecuación punto-pendiente, tenemos que calcular la ecuación de la recta que pasa por el punto (2,-3) y tiene pendiente m_1 = 3.

(y - y_0) = m_1 \cdot (x - x_0)
\Rightarrow \ (y - (-3)) = -\frac{1}{3} \cdot (x - 2)
\Rightarrow \ y + 3 = -\frac{1}{3}x + \frac{2}{3}
\Rightarrow \ y = -\frac{1}{3}x - \frac{7}{3}

Concluimos entonces que la ecuación de la recta l_1 es y = -\frac{1}{3}x - \frac{7}{3} y para determinar su gráfica, calcularemos los puntos de corte de la recta con los ejes. Entonces,

x= 0 \Rightarrow \ y = -\frac{1}{3}(0) - \frac{7}{3} \Rightarrow \ y = - \frac{7}{3}

Es decir, el punto de corte con el Eje Y es \left( 0 , - \frac{7}{3} \right)

y= 0 \Rightarrow \ 0 = -\frac{1}{3}x - \frac{7}{3} \Rightarrow \ \frac{1}{3}x = - \frac{7}{3} \Rightarrow \ x = - 7

Es decir, el punto de corte con el Eje X es \left( -7 , 0 \right)

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s