Operaciones entre conjuntos

Al considerar dos conjuntos A y B, son diversas las operaciones que se pueden definir sobre ellos dos. Sin embargo, todas tienene la misma base en las operaciones siguientes: la unión, la intersección y el complemento.

A continuación estudiaremos de forma concisa cada una de estas operaciones apoyándonos en Diagramas de Venn y usando conjuntos numéricos.

Anuncios

Unión de Conjuntos

Dados dos conjuntos A y B, definiremos la Unión de estos dos conjuntos como un nuevo conjunto que contiene todos los elementos de A junto con todos los elementos de B y la denotaremos por A \cup B. Si consideramos un elemento c del conjunto A \cup B entonces c pertenece a A o pertenece a B.

Los Diagramas de Venn nos ayudan a expresar visualmente los conjuntos para entender algunas ideas, usualmente se usan círculos para representar conjuntos contenidos en un universo rectangular. A continuación, usaremos un Diagrama de Venn para expresar visualmente la unión entre dos conjuntos.

Ejemplos

Ejemplo 1

Dentro de la Facultad de Ciencias Económicas y Sociales, la unión del conjunto de todos los estudiantes que miden menos de un metro con cincuenta centímetros con el conjunto de todos los estudiantes que miden más o incluso un metro con cincuenta centímetros es el conjunto de todos los estudiantes de la Facultad de Ciencias Económicas y Sociales.

Ejemplo 2

La unión del conjunto \{1,2,3,4\} con el conjunto \{5,6,7\} es el conjunto \{1,2,3,4,5,6,7\}, es decir,

\{1,2,3,4\} \cup \{5,6,7\} = \{1,2,3,4,5,6,7\}

Ejemplo 3

La unión del conjunto \{3,4,5,6,7,8\} con el conjunto \{5,6,7,8,9,10,11\} es el conjunto \{3,4,5,6,7,8,9,10,11\}, es decir,

\{3,4,5,6,7,8\} \cup \{5,6,7,8,9,10,11\} = \{3,4,5,6,7,8,9,10,11\}


Notemos que aunque hay elementos comunes en ambos conjuntos, estos sólo se cuentan una vez en la unión de los dos conjuntos.

Anuncios

Intersección de Conjuntos

Por otra parte si consideramos nuevamente dos conjuntos A y B, definiremos la Intersección entre estos dos conjuntos como un nuevo conjunto que contiene todos los elementos que están en A y que están en B al mismo tiempo, y lo denotaremos por A \cap B . Si consideramos un elemento c de A \cap B entonces c pertenece a A y pertenece a B. En el siguiente Diagrama de Venn, la intersección de los conjuntos queda representada por el área donde las líneas se cruzan.

Ejemplos

Ejemplo 4

Dentro de la Facultad de Ciencias Económicas y Sociales, la intersección del conjunto de todos los estudiantes de sexo masculino con el conjunto de todos los estudiantes que tienen un promedio de calificaciones de 10 puntos es el conjunto de todos los estudiantes de sexo masculino con un promedio de calificaciones de 10 puntos en la Facultad de Ciencias Económicas y Sociales.

Ejemplo 5

La intersección del conjunto \{1,2,3,4,5,6\} con el conjunto \{5,6,7,8,9,10,11\} es el conjunto \{5,6\}, es decir,

\{1,2,3,4,5,6\} \cap \{5,6,7,8,9,10,11\} = \{5,6\}

Ejemplo 6

La intersección del conjunto \{1,2,3,4\} con el conjunto \{5,6,7\} es un conjunto que no tiene elementos y que llamaremos el conjunto vacío, lo denotaremos de la siguiente forma

\{1,2,3,4\} \cup \{5,6,7\} = \varnothing


Anuncios

Complemento de un Conjunto

Diremos que el Universo (conjunto universal) es el contexto donde están definidos nuestros conjuntos, en él estarán contenidos todos los conjuntos de nuestro estudio. Por ejemplo, podemos considerar un conjunto A igual a \{2,4,6\} en el universo \{1,2,3,4,5,6,7,8,9,10\}.

Sentando base en esto, si consideramos un conjunto A, definiremos el Complemento de A como un conjunto especial que está definido como todos los elementos que no están en A y lo denotaremos por A^{c}. Si consideramos un elemento c de A^{c} entonces c no está en A. En el siguiente Diagrama de Venn, representaremos este conjunto

Ejemplos

Ejemplo 7

Dentro de la Facultad de Ciencias Económicas y Sociales, el complemento del conjunto de las personas que miden más o incluso un metro con ochenta centímetros es el conjunto de las personas que miden menos de un metro con ochenta centímetros.

Ejemplo 8

En el universo \{1,2,3,4,5,6,7,8,9,10,11\}, el complemento del conjunto \{1,2,3,4,5,6\} es el conjunto \{7,8,9,10,11\}, es decir,

\{1,2,3,4,5,6\}^{c} = \{7,8,9,10,11\}

Ejemplo 9

En el universo \{5,6,7,8,9\}, el complemento del conjunto \{5,6,7,8,9\} es un conjunto que no tiene elementos y que llamaremos el conjunto vacío, lo denotaremos de la siguiente forma
es decir,

\{5,6,7,8,9\}^{c} = \varnothing

Nota: De forma general, diremos que U^{c} = \varnothing y que \varnothing^{c} = U.


¿Tiendes dudas? ¿Requieres más ejemplos? No dudes en escribir.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios .