Indeterminación Infinito sobre Infinito ∞/∞ (1 de 2)

La Indeterminación \frac{\infty}{\infty}

Si f(x) y g(x) son dos funciones cuyos límites tienden a infinito cuando x tiende al infinito, entonces el límite de la división entre estas dos funciones presenta una indeterminación

\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{\infty}{\infty}

Consideremos de forma particular en el que P(x) y Q(x) son funciones polinomiales que tienden a infinito cuando x tiende a infinito. El método para determinar este tipo de límites consiste en dividir por x^n en el numerador y en el denominador, donde n es el mayor grado involucrado en el límite. Veamos con algunos ejemplos como llevar a cabo este método.

Ejemplos

Ejemplo 1

Si consideramos \lim_{x \to \infty} \frac{x^2 - 1}{2x + 1} = \frac{\infty}{\infty}, este límite presenta una indeterminación pero considerando que 2 es el mayor grado involucrado en el límite, entonces dividimos en el numerador y en el denominador por x^2.

\lim_{x \to \infty} \dfrac{\frac{x^2 - 1}{x^2}}{\frac{2x + 1}{x^2}}

Una vez que hemos dividido, separamos la suma en los numeradores de cada fracción de la siguiente forma

\lim_{x \to \infty} \dfrac{\frac{x^2}{x^2} - \frac{1}{x^2}}{\frac{2x}{x^2} + \frac{1}{x^2}}

Simplificamos entonces cada una de las fracciones generadas, para obtener

\lim_{x \to \infty} \dfrac{1 - \frac{1}{x^2}}{\frac{2}{x} + \frac{1}{x^2}}

Calculamos entonces el límite de cada uno de los sumandos involucrados, teniendo en cuenta que \lim_{x \to \infty} \frac{1}{x^2} = \frac{1}{\infty} = 0, \lim_{x \to \infty} \frac{2}{x} = \frac{2}{\infty} = 0, así el límite será igual a

\frac{1 - 0}{0 + 0} = \frac{1}{0} = \infty

Donde la fracción \frac{1}{0} servirá como indicador de que el numerador crece con mayor velocidad que el denominador, por lo tanto concluimos que \lim_{x \to \infty} \frac{x^2 - 1}{2x + 1} = \infty.

Ejemplo 2

\item Si consideramos \lim_{x \to \infty} \frac{x^3 - x + 4}{4x^3 + 6x^2 +10} = \frac{\infty}{\infty}, este límite presenta una indeterminación pero considerando que 3 es el mayor grado involucrado en el límite, entonces dividimos en el numerador y en el denominador por x^3.

\lim_{x \to \infty} \dfrac{\frac{x^3 - x + 4}{x^3}}{\frac{4x^3 + 6x^2 +10}{x^3}}

Una vez que hemos dividido, separamos la suma en los numeradores de cada fracción de la siguiente forma

\lim_{x \to \infty} \dfrac{\frac{x^3}{x^3} - \frac{x}{x^3} + \frac{4}{x^3}}{\frac{4x^3}{x^3} + \frac{6x^2}{x^3} + \frac{10}{x^3}}

Simplificamos entonces cada una de las fracciones generadas, para obtener

\lim_{x \to \infty} \dfrac{1 - \frac{1}{x^2} + \frac{4}{x^3}}{4 + \frac{6}{x} + \frac{10}{x^3}}

Calculamos entonces el límite de cada uno de los sumandos involucrados, teniendo en cuenta que \lim_{x \to \infty} \frac{a}{\infty} = 0, así el límite será igual a

\dfrac{1 - 0 + 0}{4 + 0 + 0} = \dfrac{1}{4}

Por lo tanto concluimos que \lim_{x \to \infty} \frac{x^3 - x + 4}{4x^3 + 6x^2 +10} = \frac{1}{4} .

Ejemplo 3

Si consideramos \lim_{x \to \infty} \frac{3x^2 - 2x - 7}{4x^4 - 9x^2 + 2} = \frac{\infty}{\infty}, este límite presenta una indeterminación pero considerando que 4 es el mayor grado involucrado en el límite, entonces dividimos en el numerador y en el denominador por x^3.

\lim_{x \to \infty} \dfrac{\frac{3x^2 - 2x - 7}{x^4}}{\frac{12x^4 - 9x^2 + 2}{x^4}}

Una vez que hemos dividido, separamos la suma en los numeradores de cada fracción de la siguiente forma

\lim_{x \to \infty} \dfrac{\frac{3x^2}{x^4} - \frac{2x}{x^4} - \frac{7}{x^4}}{\frac{12x^4}{x^4} - \frac{9x^2}{x^4} + \frac{2}{x^4}}

Simplificamos entonces cada una de las fracciones generadas, para obtener

\lim_{x \to \infty} \dfrac{\frac{3}{x^2} - \frac{2}{x^3} - \frac{7}{x^4} }{12 - \frac{9}{x^2} + \frac{2}{x^4}}

Calculamos entonces el límite de cada uno de los sumandos involucrados, teniendo en cuenta que \lim_{x \to \infty} \frac{a}{\infty} = 0, así el límite será igual a

\dfrac{0 - 0 - 0}{12 + 0 + 0} = \dfrac{0}{12} = 0

Donde la fracción \frac{0}{12} servirá como indicador de que el denominador crece con mayor velocidad que el numerador, por lo tanto concluimos que \lim_{x \to \infty} \frac{3x^2 - 2x - 7}{4x^4 - 9x^2 + 2} = 0 .

La regla general

Considerando estos tres últimos ejemplos, podemos notar que si consideramos dos polinomios que están definidos de la siguiente forma:

P(x) = a_m x^m + \ldots + a_1 x + a_0
Q(x) = b_n x^n + \ldots + b_1 x + b_0

Entonces, el límite de la división \frac{P(x)}{Q(x)} cuando x tiende a infinito estará determinado de la siguiente forma:

  • Será igual a \infty si m>n.
    Esto quiere decir que el grado del polinomio en el numerador es mayor que el grado del polinomio en el numerador, por lo tanto el numerador crece con mayor velocidad.
  • Será igual a \frac{a_m}{b_n} si m=n.
    Esto quiere decir que el grado del polinomio en el numerador es igual que el grado del polinomio en el numerador, por lo tanto ambos crecen a la misma velocidad.
  • Será igual a 0 si m<n.
    Esto quiere decir que el grado del polinomio en el denominador es mayor que el grado del polinomio en el numerador, por lo tanto el denominador crece con mayor velocidad.

2 comentarios sobre “Indeterminación Infinito sobre Infinito ∞/∞ (1 de 2)

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s