Tabla de Signos

Inecuaciones de grado mayor grado que dos

Consideremos ahora inecuaciones en las que el mayor exponente involucrado es mayor que 2, es decir, aquellas inecuaciones que se expresan de la siguiente forma:

a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0 > 0

Donde “>” representa en realidad cualquier desigualdad >, \geq, < ó \leq; a_n, a_{n-1}, ..., a_2,a_1,a_0 son números reales y n>2. Es posible determinar los valores para los cuales se satisface la desigualdad factorizando el polinomio P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0 tal como lo hicimos con las ecuaciones cuadráticas, sin embargo, este método puede ser tedioso debido a todos los casos que hay que considerar, es por esto que desarrollaremos un método más sofisticado que nos permitirá estudiar donde el polinomio P(X) es positivo o negativo, a esto le llamaremos estudiar el signo del polinomio.

En los siguientes ejemplos usaremos una tabla de análisis de signos o simplemente tabla de signos (vulgarmente conocida como el método del cementerio o método de las cruces) está basada en el Teorema de Sturm y en ella veremos como se comporta el signo del polinomio P(x) en intervalos muy particulares definidos por sus raíces.

Cuando le llamas “Tabla de Análisis de Signo”

Ejemplo 1

Calcule los valores de x que satisfacen la siguiente inecuación: x^3 + 2x^2 - x - 2 > 0.

Al considerar esta inecuación, debemos terminar cuales son los valores de x para los cuales el polinomio P(x) = x^3 + 2x^2 - x - 2 es positivo. Para esto calculemos primero sus raíces usando el Método de Ruffini.

Ya que las raíces de este polinomio son x_1=1, x_2=-1 y x_3=-2; entonces podemos factorizarlo como P(x) = (x-1)(x+1)(x+2) y nuestro propósito será el de determinar el signo de cada uno de los factores involucrados entre los intervalos (-\infty,-2), (-2,-1), (-1,1) y (1,+\infty). Para esto ubicamos cada una de las raíces del polinomio, -\infty y +\infty en la recta real de la siguiente manera:

Intervalos

Debajo de cada una de las raíces del polinomio, -\infty y +\infty se trazan rectas verticales; y además se trazan cuatro renglones horizontales. Obteniendo una tabla de la siguiente forma:

Estos renglones se reparten uno para cada factor involucrado (x-1), (x+1), (x+2) y uno para el polinomio P(x). Los ubicamos así:

Ubicamos en la tabla valor de x para el cual se anula el primer factor, es decir, el valor de x para el cual x-1 = 0. Este valor es 1 y concluimos lo siguiente: Para los valores de x menores que 1, tenemos que x-1 es negativo y para los valores de x mayores que 1, tenemos que x-1 es positivo (esto se puede verificar fácilmente hallando la solución de las inecuaciones x-1 < 0 y x-1 > 0). Esto lo expresamos en nuestra tabla con los signos + y – como sigue

Ubicamos en la tabla valor de x para el cual se anula el segundo factor, es decir, el valor de x para el cual x+1 = 0. Este valor es -1 y concluimos lo siguiente: Para los valores de x menores que -1, tenemos que x+1 es negativo y para los valores de x mayores que -1, tenemos que x+1 es positivo (esto se puede verificar fácilmente hallando la solución de las inecuaciones x+1 < 0 y x+1 > 0). Esto lo expresamos en nuestra tabla con los signos + y – como sigue

Ubicamos en la tabla valor de x para el cual se anula el segundo factor, es decir, el valor de x para el cual x+2 = 0. Este valor es -2 y concluimos lo siguiente: Para los valores de x menores que -2, tenemos que x+2 es negativo y para los valores de x mayores que -2 tenemos que x+2 es positivo (esto se puede verificar fácilmente hallando la solución de las inecuaciones x+2 < 0 y x+2 > 0). Esto lo expresamos en nuestra tabla con los signos + y – como sigue

Para cada intervalo (-\infty,-2), (-2,-1), (-1,1) y (1,+\infty) el signo de P(X) vendrá dado por el producto de los factores que lo definen. De esta forma, multiplicamos los signos de los factores de cada columna:

  • En la primera (-) \cdot (-) \cdot (-)=-
  • En la segunda (-) \cdot (-) \cdot (+)=+
  • En la tercera (-) \cdot (+) \cdot (+)=-
  • En la cuarta (+) \cdot (+) \cdot (+)=+

Por lo tanto, nuestra Tabla de Análisis de Signos queda expresada de la siguiente forma:

Finalmente, concluimos que la desigualdad planteada en x^3 + 2x^2 - x - 2 > 0 se satisface para los valores de x que pertenecen a los intervalos (-2,-1) ó (1,+\infty), entonces la solución general de la ecuación es:

(-2,-1) \cup (1,+\infty)

Ejemplo 2

Calcule los valores de x que satisfacen la siguiente inecuación: -2x^3 - 10x^2 + 4x + 48 \leq 0.

Al considerar esta inecuación, debemos terminar cuales son los valores de x para los cuales el polinomio P(x) = -2x^3 - 10x^2 + 4x + 48 es negativo o igual a cero. Para esto calculemos sus raíces usando el Método de Ruffini, primero sacamos factor común -2, entonces P(x) = -2(x^3 + 5x^2 - 2x - 24)

Ya que las raíces de este polinomio son x_1=2, x_2=-3 y x_3=-4; entonces podemos factorizarlo como P(x) = -2(x-2)(x+3)(x+4) y nuestro propósito será el de determinar el signo de cada uno de los factores involucrados entre los intervalos (-\infty,-4], [-4,-3], [-3,2] y [2,+\infty]. Tomando todas las consideraciones del ejemplo anterior y además, tomando en cuenta que el factor -2 es un número negativo constante, nuestra tabla de análisis de signo quedará expresada como

Finalmente, concluimos que la desigualdad planteada en la inecuación -2x^3 - 10x^2 + 4x + 48 \leq 0 se satisface para los valores de x que pertenecen a los intervalos [-4,-3] ó [2,+\infty), entonces la solución general de la ecuación es:

[-4,-3] \cup [2,+\infty)


Inecuaciones Cuadráticas (2 de 2)

¿Cuándo el producto de dos números es negativo?

Caso 2: ax^2+bx+c < 0

Sean p y q dos números reales. Consideremos el producto p \cdot q < 0, entonces fijándonos en la ley de los signos, podemos concluir que las condiciones que deben cumplir p y q para que se satisfaga la desigualdad son las siguientes:

p > 0 \text{ y } q < 0
ó
p > 0 \text{ y } q < 0

Es decir, p y q deben deben ser siempre uno negativo y otro positivo. Ya que “más por menos es menos” y “menos por más es menos”. Este caso también aplica cuando consideramos la desigualdad “menor o igual” (\leq). Veamos entonces en los siguientes ejemplos como calcular la solución de este tipo de ecuaciones.

Ejemplo 1 (x+4) \cdot (x-1) < 0

x+4 > 0 \text{ y } x-1 < 0
ó
x+4 < 0  \text{ y }  x-1 > 0

Posteriormente despejamos la variable x de cada una de estas inecuaciones lineales e identificamos cada línea para presentar la solución de la siguiente manera:

x > -4 \text{ y } x < 1 (1)
ó
x < -4 \text{ y } x > 1 (2)

La solución general de la inecuación cuadrática viene dada por todos los números que satisfacen la línea (1) o todos los números que satisfacen la línea (2), analíticamente representaremos la solución como la unión de los dos conjuntos que generados al calcular la solución de cada línea. Veamos entonces como calcular ambas soluciones:

Solución 1:

Considerando que la línea (1) representa a todos los números que son mayores que -4 y menores que 1 al mismo tiempo, entonces consideramos la intersección de los intervalos (-4,+\infty) y (-\infty,1) así

(-4,+\infty) \cap (-\infty,1) = (-4,1)

Solución 2:

Considerando que la línea (2) representa a todos los números que son menores que -4 y mayores que 1 al mismo tiempo, sin embargo, no existe ningún número que cumpla con esta condición. Entonces al considerar la intersección de los intervalos (-\infty,-4) y (1,+\infty) esta se representará con el conjunto vacío, así, tenemos que

(-\infty,-4) \cap (1,+\infty) = \emptyset

la intersección de los dos conjuntos es vacía

Finalmente tomamos en cuenta que la solución general viene dada por todos los números que cumplen con (1) o todos los elementos que cumplen con (2), es por esto que consideraremos la unión de la solución (1) y (2).

Solución General:
(-4,1) \cup \emptyset = (-4,1)

Consideremos ahora un ejemplo donde el polinomio cuadrático no está factorizado, además, hagamos cada pasa de forma resumida para agilizar el desarrollo del ejemplo.

Ejemplo 2 x^2 + x - \dfrac{3}{4}  \leq 0

Notando que el polinomio no está factorizado, utilizamos el método del discriminante para factorizarlo considerando que sus coeficientes son a = 1, b = 1 y c = -\dfrac{3}{4}:

x = \dfrac{-b \pm \sqrt{b^2-4 \cdot a \cdot c}}{2 \cdot a} = \dfrac{ -1 \pm \sqrt{( 1 )^2 - 4 \cdot ( 1 ) \cdot ( -\frac{3}{4} )}}{2 \cdot ( 1 )} =  \dfrac{ 1  \pm  2 }{ 2 }

Así, x_1 = -\dfrac{ 1 }{ 2 } y x_2 = \dfrac{ 3 }{ 2 }, por lo tanto, podemos factorizar la inecuación cuadrática de la forma:

\left( x + \dfrac{ 1 }{ 2 } \right) \cdot \left( x - \dfrac{ 3 }{ 2 } \right) \leq 0

\Rightarrow x + \dfrac{ 1 }{ 2 } \geq 0 \text{ y }x - \dfrac{ 3 }{ 2 }  \leq  0
ó
\Rightarrow x + \dfrac{ 1 }{ 2 }  \leq  0  \text{ y } x - \dfrac{ 3 }{ 2 } \geq 0

\Rightarrow x + \dfrac{ 1 }{ 2 } \geq 0 \text{ y }x - \dfrac{ 3 }{ 2 }  \leq  0
ó
\Rightarrow x + \dfrac{ 1 }{ 2 }  \leq  0  \text{ y } x - \dfrac{ 3 }{ 2 } \geq 0

Solución 1:

\left[ - \dfrac{ 1 }{ 2 },+\infty \right) \cap \left( -\infty,\dfrac{ 3 }{ 2 } \right] = \left[ - \dfrac{ 1 }{ 2 },\dfrac{ 3 }{ 2 } \right]

Solución 2:

\left( -\infty, - \frac{ 1 }{ 2 } \right] \cap \left[\frac{ 3 }{ 2 },+\infty \right) = \emptyset

Solución General:
\left[ - \frac{ 1 }{ 2 } , \frac{ 3 }{ 2 } \right] \cup \emptyset = \left[ - \frac{ 1 }{ 2 } , \frac{ 3 }{ 2 } \right]

Inecuaciones Cuadráticas (1 de 2)

¡Retomemos la Ley de los Signos!

Así como hemos definido las ecuaciones cuadráticas, es posible definir las inecuaciones cuadráticas considerando tres números reales a, b y c, de la siguiente forma

Donde > pudiera ser cualquier desigualdad.

Donde “>” representa en realidad cualquier desigualdad >, \geq, < ó \leq. Tomando en cuenta que al conocer las raíces de un polinomio cuadrático, éste se puede reescribir como el producto de dos factores, plantearemos la solución de las inecuaciones cuadráticas partiendo de la ley de los signos.

Para esto hacemos dos preguntas: ¿Cuándo el producto de dos números es positivo? y, ¿cuándo el producto de dos números es negativo? Para responderlas, debemos plantear dos casos:

Caso 1: ax^2+bx+c > 0

Sean p y q dos números reales. Consideremos el producto p \cdot q > 0, entonces fijándonos en la ley de los signos, podemos concluir que las condiciones que deben cumplir p y q para que se satisfaga la desigualdad son las siguientes:

p > 0 \text{ y } q > 0
ó
p < 0 \text{ y }  q < 0

Es decir, ambos números p y q deben ser ambos positivos o ambos negativos al mismo tiempo. Ya que “más por más es más” y “menos por menos es más”. Este caso también aplica cuando consideramos la desigualdad “mayor o igual” (\geq). Veamos entonces en los siguientes ejemplos como calcular la solución de este tipo de ecuaciones.

Ejemplo 1 (x-2) \cdot (x+3) > 0

Consideremos una inecuación cuadrática donde el polinomio cuadrático ya está factorizado de la siguiente forma: (x-2) \cdot (x+3) > 0, Entonces, considerando los dos factores (x-2) y (x+3) tenemos que

x-2 > 0 \text{ y } x+3 > 0
ó
x-2 < 0 \text{ y } x+3 < 0

Notamos entonces que quedan planteadas cuatro inecuaciones lineales de las cuales se puede despejar la variable x con facilidad. Así,

x > 2 \text{ y } x > -3 (1)
ó
x < 2 \text{ y } x < -3 (2)

La solución general de la inecuación cuadrática viene dada por todos los números que satisfacen la línea (1) o todos los números que satisfacen la línea (2), analíticamente representaremos la solución como la unión de los dos conjuntos que generados al calcular la solución de cada línea. Veamos entonces como calcular ambas soluciones:

Solución (1): Considerando que la línea (1) representa a todos los números que son mayores que 2 y mayores que -3 al mismo tiempo, entonces consideramos la intersección de los intervalos (2,+\infty) y (-3,+\infty) así

(2,+\infty) \cap (-3,+\infty) = (2,+\infty)

intersección de los dos intervalos

Solución (2): Considerando que la línea (2) representa a todos los números que son menores que 2 y menores que -3 al mismo tiempo, entonces consideramos la intersección de los intervalos (-\infty,2) y (-\infty,-3) así

(-\infty,2) \cap (-\infty,-3) = (-\infty,-3)

intersección de los dos intervalos

Finalmente tomamos en cuenta que la solución general viene dada por todos los números que cumplen con la solución (1) o todos los elementos que cumplen con la solución (2), es por esto que consideraremos la unión de la solución (1) y (2).

Solución General:
(2,+\infty) \cup (-\infty,-3)

unión de los dos intervalos

Consideremos ahora un ejemplo donde el polinomio cuadrático no está factorizado, además, hagamos cada pasa de forma resumida para agilizar el desarrollo del ejemplo.

Ejemplo 2 x^2 + 6x + 8  \geq 0

Notando que el polinomio no está factorizado, utilizamos el método del discriminante para factorizarlo considerando que sus coeficientes son a=1, b=6 y c=8:

x  =  \dfrac{-b \pm \sqrt{b^2-4 \cdot a \cdot c}}{2 \cdot a} = \dfrac{ -6 \pm \sqrt{( 6 )^2-4 \cdot ( 1 ) \cdot ( 8 )}}{2 \cdot ( 1 )} =  \dfrac{ -6  \pm  2 }{ 2 }

Así, x_1 = -2 y x_2 = -4, por lo tanto, podemos reescribir la inecuación cuadrática de la forma: (x - ( -2 )) \cdot (x - ( -4 )) \geq 0 que a su vez se puede expresar como

(x  +2 ) \cdot (x  +4 ) \geq 0

x+2 \geq 0 \text{ y } x+4 \geq 0 (1)
ó
x+2 \leq 0 \text{ y } x+4 \leq 0 (2)

\Rightarrow  x \geq -2 \text{ y } x \geq -4 (1)
ó
\Rightarrow  x \leq -2 \text{ y } x \leq -4 (2)

Solución (1):

[-2,+\infty) \cap [-4,+\infty) = [-2,+\infty)

Solución (2):

(-\infty,-2] \cap (-\infty,-4] = (-\infty,-4]

Solución General:
[-2,+\infty) \cup (-\infty,-4]

Aunque se pueden considerar más ejemplos, estos son los ejemplos básicos de las situaciones que se pueden presentar al calcular la solución de una inecuación cuadrática. Luego consideraremos el caso 2, donde estudiaremos qué ocurre si el producto de dos números es negativo.

Intervalos

¡Acotemos conjuntos numéricos!

Al considerar la solución de una inecuación, tenemos conjuntos numéricos muy particulares. Al expresar estos de forma gráfica sobre la recta real, vemos que tienen una estructura parecida, es por esto que podemos clasificar las distintas formas en que podemos expresar estas soluciones. Para esto definimos los intervalos.

Sea a un numero real, entonces podemos definir cuatro tipo de intervalos no acotados de la siguiente forma:

Intervalo abierto en a

\{ x \in R : x > a \} = (a,+\infty)

Intervalo cerrado en a

\{ x \in R : x > a \} = [a,+\infty)

Intervalo abierto en a

\{ x \in R : x < a \} = (-\infty,a)

Intervalo cerrado en a

\{ x \in R : x < a \} = (-\infty,a]

Sentando base en estos intervalos, es posible definir otro tipo de intervalos a partir de la intersección de estos. Es decir, definimos un intervalo como el conjunto de todos los números que se encuentran entre dos números dados. Consideremos dos números reales a y b tal que a < b, entonces podemos definir cuatro tipo de intervalos acotados de la siguiente forma:

Intervalo abierto

(a,+\infty) \cap  (-\infty,b) = (a,b)

Intervalo semicerrado o semiabierto

[a,+\infty) \cap  (-\infty,b) = [a,b)

Intervalo semicerrado o semiabierto

(a,+\infty) \cap  (-\infty,b] = (a,b]

Intervalo cerrado

(a,+\infty) \cap  (-\infty,b)= [a,b]

De esta forma, si consideramos una inecuación, podemos expresar su solución en términos de intervalos para facilitar su ilustración de una forma mas intuitiva, veamos con un ejemplo como usar intervalos al resolver inecuaciones.

Ejemplo -1 \leq 10-4x < 22

Ecuación 1

-1 \leq 10-4x

-1 -10 \leq -4x

-11 \leq -4x

\frac{-11}{-4} \geq x

\frac{11}{4} \geq x

x \leq \frac{11}{4}

Solución 1:

\left(-\infty,\frac{11}{4} \right]

Ecuación 2

10-4x < 22

-4x < 22-10

-4x < 12

-4x < 12

x > \frac{12}{-4}

x > -3

Solución 2:

(-3,+\infty)

Por lo tanto, la solución de la inecuación -1 \leq 10-4x < 22 viene dada por la intersección de la solución 1 con la solución 2, es decir,

\left(-\infty,\frac{11}{4} \right]  \cap (-3,+\infty) = \left( -3,\frac{11}{4} \right]

Inecuaciones (2 de 2)

¿Es posible acotar un número desconocido?

Suponga que usted debe llenar una piscina inflable (para bebés) con agua, ésta tiene actualmente treinta litros de agua, pero no puede cargar menos de cuarenta litros porque se desinfla y no debe cargar más de ochenta porque se derrama, ¿cuánta agua puede verter en esta piscina? Éste tipo de situaciones la podemos expresar con una inecuación en la que acotamos un número desconocido por otros dos de la siguiente forma:

Si consideramos a, b, c y d números reales, entonces de forma general este tipo de ecuaciones las expresaremos así

Este tipo de inecuaciones son equivalentes a decir, que x satisface las inecuaciones a < bx + c y con bx + c < d al mismo tiempo. Es decir, los valores de x que cumplen con:

Para hallar los valores de x que satisfacen la ecuación original, debemos calcular la solución de cada una de estas inecuaciones por separado. Si retomamos nuestro ejemplo original 40 < 30 + x < 80, tenemos dos inecuaciones

Inecuación 1

40 < 30 + x

\Rightarrow 40 - 30 < x

\Rightarrow 10 < x

\Rightarrow x > 10

Inecuación 2

30 + x < 80

\Rightarrow x < 80 - 30

\Rightarrow x < 50

A partir de estas dos inecuaciones, tenemos dos conjuntos de soluciones expresados de forma comprensiva y de forma gráfica sobre la recta real, tenemos lo siguiente

Solución 1:

\{ x \in R : x > 10  \}

todos los números mayores que diez

Solución 2:

\{ x \in R : x < 50  \}

todos los números menores que cincuenta

Al considerar estas dos soluciones, debemos recordar que la solución de la inecuación original se encuentra en estos dos conjuntos al mismo tiempo, es decir, se encuentra en la intersección de estos dos conjuntos, por lo tanto x se encuentra en el siguiente conjunto

\{ x \in R : x > 10  \} \cap \{ x \in R : x < 50 \}

representación gráfica de la intersección de dos conjuntos

Notemos que gráficamente, los elementos de nuestra solución se encuentran en el área donde se cruzan las líneas, es decir, entre 10 y 50. Así, concluimos que se pueden verter entre diez y cincuenta litros de agua a la piscina inflable para que ésta se pueda usar con tranquilidad.

Nota: Si consideramos a menor que b, es lo mismo que considerar b mayor que a. Es decir, a < b y b > a son expresiones equivalentes.

Veamos en los siguientes ejemplos, como abordar este tipo de ecuaciones de una forma más resumida tomando en cuenta lo expuesto anteriormente.

Ejemplo 2 1 \leq x + 3 \leq 5

Inecuación 1

1 \leq x + 3

\Rightarrow 1 -3 \leq x

\Rightarrow -2 \leq x

\Rightarrow x \geq -2

Solución 1:

\{ x \in R : x \geq -2  \}

todos los números mayores o iguales que menos dos

Inecuación 2

x + 3 \leq 5

\Rightarrow x \leq 5 - 3

\Rightarrow x \leq 2

Solución 2:

\{ x \in R : x \leq 2 \}

todos los números menores o iguales que dos

Por lo tanto, la solución de la inecuación 1 \leq x + 3 \leq 5 viene dada por la intersección de la solución 1 con la solución 2, es decir, el siguiente conjunto:

\{ x \in R : -2 \leq x  \} \cap \{ x \in R : x \leq 2 \}

representación gráfica de la intersección de dos conjuntos

Ejemplo 3 4 \geq 2x + 5 > -2

Inecuación 1

4 \geq 2x + 5

\Rightarrow  4 - 5 \geq 2x

\Rightarrow  -1 \geq 2x

\Rightarrow  -\frac{1} {2}\geq x

\Rightarrow  x \leq -\frac{1} {2} x

Solución 1:

\{ x \in R : x \leq -\frac{1}{2} \}

Inecuación 2

2x + 5 > -2

\Rightarrow 2x > -2 -5

\Rightarrow 2x > -7

\Rightarrow x > -\frac{7}{2}

Solución 2:

\{ x \in R : x > -\frac{7}{2} \}

Por lo tanto, la solución de la inecuación 4 \geq 2x + 5 > -2 viene dada por la intersección de la solución 1 con la solución 2, es decir,

\{ x \in R : -\frac{1}{2} \geq x \} \cap \{ x \in R : x > -\frac{7}{2} \}

Para concluir, podemos ver que hay soluciones de inecuaciones que vienen acotadas por un dos números. Más adelante será necesario expresar estas soluciones acotadas de una forma que facilite su interpretación y su ilustración.