Indeterminación Infinito sobre Infinito ∞/∞ (2 de 2)

Vimos que al considerar el cociente entre polinomios cuando la variable x tiende infinito, se puede determinar el límite considerando el grado de los polinomios. Esta situación se puede generalizar para cualquier cociente entre funciones considerando el grado de ambas funciones. Veamos entonces con los siguientes ejemplos como determinar este tipo de límites.

También pudiera interesarte

Ejemplos

Ejemplo 1

Si consideramos \lim_{x \to \infty} \frac{\sqrt{x} + 1}{x+1} = \frac{\infty}{\infty}, este límite presenta una indeterminación pero considerando que el grado de la función en el numerador es igual a \frac{1}{2} y el grado del denominador es igual a 1 entonces

\lim_{x \to \infty} \frac{\sqrt{x} + 1}{x+1} = 0

Ejemplo 2

Si consideramos \lim_{x \to \infty} \frac{\text{\large e}^x + x^2 + 5}{2x^7 + 3x^5 + x} = \frac{\infty}{\infty}, este límite presenta una indeterminación pero considerando que el grado de la función en el numerador es exponencial y el grado del denominador es igual a 7 entonces

\lim_{x \to \infty} \frac{\text{\large e}^x + x^2 + 5}{2x^7 + 3x^5 + x} = \infty

Ejemplo 3

Si consideramos \lim_{x \to \infty} \frac{x + 100}{\ln(x) + 20} = \frac{\infty}{\infty}, este límite presenta una indeterminación pero considerando que el grado de la función en el numerador es igual a 1 y el grado del denominador es logarítmico entonces

\lim_{x \to \infty} \frac{x + 100}{\ln(x) + 20} = \infty

Anuncios

¿Y si el grado es el mismo?

Si bien estos ejemplos no presentan mayor complicación para determinarlos debido a que la diferencia entre los grados es clara, vale la pena considerar otros ejemplos en los que el grado de las funciones es el mismo. La técnica no será muy distinta a la que usamos para determinar los límites de cocientes entre polinomios pues dividiremos siempre el numerador y el denominador por la función elemental de mayor grado involucrada en el límite.

Límite que involucra una función radical

Si consideramos \lim_{x \to \infty} \frac{\sqrt{9x+5} - 7}{\sqrt{3x-25} + 8} = \frac{\infty}{\infty}, este límite presenta una indeterminación pero considerando que el grado en ambos miembros de la fracción es \frac{1}{2}, entonces dividimos el numerador y el denominador por \sqrt{x}

\lim_{x \to \infty} \dfrac{\frac{\sqrt{9x+5} - 7}{\sqrt{x}}}{\frac{\sqrt{4x-25} + 8}{\sqrt{x}}}

Una vez que hemos dividido, separamos la suma en los numeradores de cada fracción de la siguiente forma

\lim_{x \to \infty} \dfrac{\frac{\sqrt{9x+5}}{\sqrt{x}} - \frac{7}{\sqrt{x}}}{\frac{\sqrt{4x-25}}{\sqrt{x}} + \frac{8}{\sqrt{x}}}

Notamos además, que podemos combinar las raíces cuadradas de la siguiente manera

\lim_{x \to \infty} \dfrac{\sqrt{\frac{9x+5}{x}} - \frac{7}{\sqrt{x}}}{\sqrt{\frac{4x-25}{x}} + \frac{8}{\sqrt{x}}}

Simplificamos entonces cada una de las fracciones generadas de la misma forma que las hemos simplificado anteriormente, para obtener

\lim_{x \to \infty} \dfrac{\sqrt{9+\frac{5}{x}} - \frac{7}{\sqrt{x}}}{\sqrt{4-\frac{25}{x}} + \frac{8}{\sqrt{x}}}

Calculamos entonces el límite de cada uno de las expresiones involucradas, teniendo en cuenta que \lim_{x \to \infty} \frac{a}{x} = 0 y \lim_{x \to \infty} \frac{a}{\sqrt{x}} = 0 (con a \neq 0), así el límite será igual a

\dfrac{\sqrt{9+0} - 0}{\sqrt{4-0} + 0} = \dfrac{\sqrt{9}}{\sqrt{4}} = \dfrac{3}{2}

Por lo tanto concluimos que \lim_{x \to \infty} \frac{\sqrt{9x+5} - 7}{\sqrt{3x-25} + 8} = \frac{3}{2}

Anuncios

Al considerar funciones algebraicas es más intuitiva la simplificación de las expresiones, sin embargo, al considerar funciones trascendentales esta simplificación no es tan obvia, es por eso que en los siguientes ejemplos veremos algunos casos donde podemos determinar los límites de forma intuitiva.

Límite que involucra una función exponencial

Si consideramos \lim_{x \to \infty} \frac{10 \text{\large e}^x + 3x + 2}{5\text{\large e}^x + x^2-7} = \frac{\infty}{\infty}, este límite presenta una indeterminación pero considerando que el grado en ambos miembros de la fracción es exponencial, entonces dividimos el numerador y el denominador por \text{\large e}^x

\lim_{x \to \infty} \dfrac{\frac{10 \text{\large e}^x + 3x + 2}{\text{\large e}^x}}{\frac{5\text{\large e}^x + x^2-7}{\text{\large e}^x}}

Una vez que hemos dividido, separamos la suma en los numeradores de cada fracción de la siguiente forma

\lim_{x \to \infty} \dfrac{ 10\frac{\text{\large e}^x}{\text{\large e}^x} + \frac{3x}{\text{\large e}^x} + \frac{2}{\text{\large e}^x}}{5 \frac{\text{\large e}^x}{\text{\large e}^x} + \frac{x^2}{\text{\large e}^x}-\frac{7}{\text{\large e}^x}}

Simplificamos entonces cada una de las fracciones generadas, para obtener

\lim_{x \to \infty} \dfrac{ 10 + 3\frac{x}{\text{\large e}^x} + \frac{2}{\text{\large e}^x}}{5 + \frac{x^2}{\text{\large e}^x}-\frac{7}{\text{\large e}^x}}

Calculamos entonces el límite de cada uno de los sumandos involucrados, teniendo en cuenta que \lim_{x \to \infty} \frac{a}{\text{\large e}^x} = 0 (con a \neq 0), \frac{x}{\text{\large e}^x} = 0 y \frac{x^2}{\text{\large e}^x} = 0, así el límite será igual a

\frac{10 + 0 + 0}{5 + 0 - 0} = \frac{10}{5} = 2

Por lo tanto concluimos que \lim_{x \to \infty} \frac{10 \text{\large e}^x + 3x + 2}{5\text{\large e}^x + x^2-7} = 2

Anuncios

Límite que involucra una función logarítmica

Si consideramos \lim_{x \to \infty} \frac{14 \ln(x) + 3}{5\ln(x) - 25} = \frac{\infty}{\infty}, este límite presenta una indeterminación pero considerando que el grado en ambos miembros de la fracción es exponencial, entonces dividimos el numerador y el denominador por \ln(x)

\lim_{x \to \infty} \dfrac{\frac{14 \ln(x) + 3}{\ln(x)}}{\frac{5\ln(x) - 25}{\ln(x)}}

Una vez que hemos dividido, separamos la suma en los numeradores de cada fracción de la siguiente forma

\lim_{x \to \infty} \dfrac{ 14\frac{\ln(x)}{\ln(x)} + \frac{3}{\ln(x)}}{5 \frac{\ln(x)}{\ln(x)} - \frac{25}{\ln(x)}}

Simplificamos entonces cada una de las fracciones generadas, para obtener

\lim_{x \to \infty} \dfrac{ 14 + \frac{3}{\ln(x)}}{5 - \frac{25}{\ln(x)}}

Calculamos entonces el límite de cada uno de los sumandos involucrados, teniendo en cuenta que \lim_{x \to \infty} \frac{a}{\ln(x)} = 0 (con a \neq 0), así el límite será igual a

\frac{14 + 0}{5 - 0} = \frac{14}{5}

Por lo tanto concluimos que \lim_{x \to \infty} \frac{14 \ln(x) + 3}{5\ln(x) - 25} = \frac{14}{5}


Indeterminación Infinito sobre Infinito ∞/∞ (1 de 2)

La Indeterminación \frac{\infty}{\infty}

Si f(x) y g(x) son dos funciones cuyos límites tienden a infinito cuando x tiende al infinito, entonces el límite de la división entre estas dos funciones presenta una indeterminación

\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{\infty}{\infty}

Consideremos de forma particular en el que P(x) y Q(x) son funciones polinomiales que tienden a infinito cuando x tiende a infinito. El método para determinar este tipo de límites consiste en dividir por x^n en el numerador y en el denominador, donde n es el mayor grado involucrado en el límite. Veamos con algunos ejemplos como desarrollar este método.

También pudiera interesarte

Ejemplos

Ejemplo 1

Si consideramos \lim_{x \to \infty} \frac{x^2 - 1}{2x + 1} = \frac{\infty}{\infty}, este límite presenta una indeterminación pero considerando que 2 es el mayor grado involucrado en el límite, entonces dividimos en el numerador y en el denominador por x^2.

\lim_{x \to \infty} \dfrac{\frac{x^2 - 1}{x^2}}{\frac{2x + 1}{x^2}}

Una vez que hemos dividido, separamos la suma en los numeradores de cada fracción de la siguiente forma

\lim_{x \to \infty} \dfrac{\frac{x^2}{x^2} - \frac{1}{x^2}}{\frac{2x}{x^2} + \frac{1}{x^2}}

Simplificamos entonces cada una de las fracciones generadas, para obtener

\lim_{x \to \infty} \dfrac{1 - \frac{1}{x^2}}{\frac{2}{x} + \frac{1}{x^2}}

Calculamos entonces el límite de cada uno de los sumandos involucrados, teniendo en cuenta que \lim_{x \to \infty} \frac{1}{x^2} = \frac{1}{\infty} = 0, \lim_{x \to \infty} \frac{2}{x} = \frac{2}{\infty} = 0, así el límite será igual a

\frac{1 - 0}{0 + 0} = \frac{1}{0} = \infty

Donde la fracción \frac{1}{0} servirá como indicador de que el numerador crece con mayor velocidad que el denominador, por lo tanto concluimos que \lim_{x \to \infty} \frac{x^2 - 1}{2x + 1} = \infty.

Ejemplo 2

\item Si consideramos \lim_{x \to \infty} \frac{x^3 - x + 4}{4x^3 + 6x^2 +10} = \frac{\infty}{\infty}, este límite presenta una indeterminación pero considerando que 3 es el mayor grado involucrado en el límite, entonces dividimos en el numerador y en el denominador por x^3.

\lim_{x \to \infty} \dfrac{\frac{x^3 - x + 4}{x^3}}{\frac{4x^3 + 6x^2 +10}{x^3}}

Una vez que hemos dividido, separamos la suma en los numeradores de cada fracción de la siguiente forma

\lim_{x \to \infty} \dfrac{\frac{x^3}{x^3} - \frac{x}{x^3} + \frac{4}{x^3}}{\frac{4x^3}{x^3} + \frac{6x^2}{x^3} + \frac{10}{x^3}}

Simplificamos entonces cada una de las fracciones generadas, para obtener

\lim_{x \to \infty} \dfrac{1 - \frac{1}{x^2} + \frac{4}{x^3}}{4 + \frac{6}{x} + \frac{10}{x^3}}

Calculamos entonces el límite de cada uno de los sumandos involucrados, teniendo en cuenta que \lim_{x \to \infty} \frac{a}{\infty} = 0, así el límite será igual a

\dfrac{1 - 0 + 0}{4 + 0 + 0} = \dfrac{1}{4}

Por lo tanto concluimos que \lim_{x \to \infty} \frac{x^3 - x + 4}{4x^3 + 6x^2 +10} = \frac{1}{4} .

Ejemplo 3

Si consideramos \lim_{x \to \infty} \frac{3x^2 - 2x - 7}{4x^4 - 9x^2 + 2} = \frac{\infty}{\infty}, este límite presenta una indeterminación pero considerando que 4 es el mayor grado involucrado en el límite, entonces dividimos en el numerador y en el denominador por x^3.

\lim_{x \to \infty} \dfrac{\frac{3x^2 - 2x - 7}{x^4}}{\frac{12x^4 - 9x^2 + 2}{x^4}}

Una vez que hemos dividido, separamos la suma en los numeradores de cada fracción de la siguiente forma

\lim_{x \to \infty} \dfrac{\frac{3x^2}{x^4} - \frac{2x}{x^4} - \frac{7}{x^4}}{\frac{12x^4}{x^4} - \frac{9x^2}{x^4} + \frac{2}{x^4}}

Simplificamos entonces cada una de las fracciones generadas, para obtener

\lim_{x \to \infty} \dfrac{\frac{3}{x^2} - \frac{2}{x^3} - \frac{7}{x^4} }{12 - \frac{9}{x^2} + \frac{2}{x^4}}

Calculamos entonces el límite de cada uno de los sumandos involucrados, teniendo en cuenta que \lim_{x \to \infty} \frac{a}{\infty} = 0, así el límite será igual a

\dfrac{0 - 0 - 0}{12 + 0 + 0} = \dfrac{0}{12} = 0

Donde la fracción \frac{0}{12} servirá como indicador de que el denominador crece con mayor velocidad que el numerador, por lo tanto concluimos que \lim_{x \to \infty} \frac{3x^2 - 2x - 7}{4x^4 - 9x^2 + 2} = 0 .

Anuncios

La regla general

Considerando estos tres últimos ejemplos, podemos notar que si consideramos dos polinomios que están definidos de la siguiente forma:

P(x) = a_m x^m + \ldots + a_1 x + a_0
Q(x) = b_n x^n + \ldots + b_1 x + b_0

Entonces, el límite de la división \frac{P(x)}{Q(x)} cuando x tiende a infinito estará determinado de la siguiente forma:

  • Será igual a \infty si m>n.
    Esto quiere decir que el grado del polinomio en el numerador es mayor que el grado del polinomio en el numerador, por lo tanto el numerador crece con mayor velocidad.
  • Será igual a \frac{a_m}{b_n} si m=n.
    Esto quiere decir que el grado del polinomio en el numerador es igual que el grado del polinomio en el numerador, por lo tanto ambos crecen a la misma velocidad.
  • Será igual a 0 si m<n.
    Esto quiere decir que el grado del polinomio en el denominador es mayor que el grado del polinomio en el numerador, por lo tanto el denominador crece con mayor velocidad.

Operaciones e Indeterminaciones en el infinito

  1. Suma
  2. Producto
  3. División
  4. Potencias
  5. Ejemplos
    1. Ejemplo 1
    2. Ejemplo 2
    3. Ejemplo 3
    4. Ejemplo 4
    5. Ejemplo 5
    6. Ejemplo 6

Así como hemos podido definir límites finitos de las operaciones básicas entre funciones separando los límites, también será posible definir las operaciones básicas entre límites infinitos teniendo algunas consideraciones. Si f(x) y g(x) son dos funciones cuyos límites tienden a infinito cuando x tiende al infinito; a(x) es una función que tiende a la constante a_0 \neq 0 cuando x tiende a infinito y b(x) es una función que tiende cero cuando x tiende a infinito; entonces veamos qué indeterminaciones conseguimos al considerar las siguientes operaciones:

También pudiera interesarte

Suma

Sumas, restas e indeterminaciones en el infinito | totumat.com

La resta de infinitos está indeterminada, porque aunque la noción de infinito se usa para denotar números muy grandes, no necesariamente representan el mismo número. También hay que considerar que hay funciones que crecen de forma distinta respecto a otras, por lo que al considerar la resta entre ellas, hay que estudiar cual de las dos crece con mayor rapidez.

Producto

Productos e indeterminaciones en el infinito | totumat.com

El producto de cero por infinito está indeterminado. Hay que considerar que hay funciones que crecen o decrecen de forma distinta respecto a otras, por lo que al considerar el producto entre ellas, hay que estudiar cual de las dos crece o decrece con mayor rapidez.



División

División e indeterminaciones en el infinito | totumat.com

La división entre infinitos está indeterminada, porque aunque la noción de infinito se usa para denotar números muy grandes, no necesariamente representan el mismo número. También hay que considerar que hay funciones que crecen de forma distinta respecto a otras, por lo que al considerar la división entre ellas, hay que estudiar cual de las dos crece con mayor rapidez. De igual forma, la división de cero entre infinito o infinito entre cero está indeterminada pues se debe considerar que hay funciones que crecen o decrecen de forma distinta respecto a otras, por lo que al considerar la división entre ellas, hay que estudiar cual de las dos crece o decrece con mayor rapidez.

Potencias

Potencias e indeterminaciones en el infinito | totumat.com

La expresión uno a la infinito está indeterminada, la expresión infinito a la cero está indeterminada, la expresión cero a la infinito está indeterminada, intuitivamente lo que ocurre es que si se multiplica un número mayor que uno por él mismo de forma indefinida, este producto tenderá hacia al infinito; si se multiplica un número mayor que uno por él mismo de forma indefinida de forma indefinida, este producto tenderá hacia cero; si se multiplica el número uno por él mismo de forma indefinida, este producto será siempre igual a uno. Pero cuando una expresión tiende a uno se multiplica por ella misma de forma indefinida, ¿hacia donde tiende? ¿A cero? ¿A uno? ¿A infinito?

De esta lista de operaciones, se han etiquetado con (IND) los límites indeterminados, más adelante veremos cuales son las técnicas para determinarlos. Por ahora, veamos con algunos ejemplos como calcular este tipo de límites infinitos que no presentan problemas de determinación.



Ejemplos

Ejemplo 1

Considere la función f(x) = x + 5, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} x + 5 = \infty + 5 = \infty

Ejemplo 2

Considere la función f(x) = 3x^2 - 12, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} 3x^2 - 12 = 3 \cdot (\infty)^2 - 12 = 3 \cdot \infty - 12 = \infty - 12 = \infty

Ejemplo 3

Considere la función f(x) = 4x^3 + 6(x-14)^2 + 9, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} 4x^3 + 6(x-14)^2 + 9 = 4(\infty)^3 + 6(\infty)^2 + 9 = 4 \cdot \infty + 6 \cdot \infty + 9 = \infty



Ejemplo 4

Considere la función f(x) = \frac{1}{x} - \frac{3}{x} + 7, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} \frac{1}{x} - \frac{3}{x+1} + 7 = \frac{1}{\infty} - \frac{3}{\infty} + 7 = 0 + 0+ 7 = 7

Ejemplo 5

Considere la función f(x) = \sqrt{x} + \frac{11}{4x} + \sqrt[5]{x+3}, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} \sqrt{x} + \frac{11}{4x} + \sqrt[5]{x+3} = \sqrt{\infty} + \frac{11}{4 \cdot \infty} + \sqrt[5]{\infty+3} = \infty + 0 + \infty = \infty

Ejemplo 6

Considere la función f(x) = (x+2)^{x^2-6}, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} (x+2)^{x^2-6} = (\infty+2)^{\infty^2-6}  = \infty^{\infty} = \infty


El Infinito | totumat.com

El Infinito

  1. Límite infinito con variable finita
  2. Límite finito con variable infinita
  3. Límite infinito con variable infinita

¡Imagine el número más grande del mundo!

El estudio del comportamiento de una función puede involucrar valores muy grandes, tanto para la función como para la variable involucrada. A continuación veremos con detenimiento los distintos casos que se pueden presentar al estudiar el comportamiento de funciones que involucran valores muy grandes.

También pudiera interesarte

Límite infinito con variable finita

Consideremos la función f(x) = \frac{1}{x}, si consideramos valores de x menores que 1, por ejemplo: \frac{1}{2}, su imagen será 2; \frac{1}{3}, su imagen será 3; \frac{1}{4}, su imagen será 4; y así sucesivamente notamos que a medida que nos vamos acercando al cero, las imágenes crecen cada vez más. Entonces nos preguntamos siguiendo esta idea: ¿Hacia donde tiende f(x) = \frac{1}{x} cuando x tiende a cero? La función alcanzará valores muy grandes que no pueden ser cuantificables, esta idea la denotamos con el infinito y la expresamos con el siguiente límite \lim_{x \to 0^+} \frac{1}{x} = +\infty

Formalmente, diremos que una función f(x) tiende a más infinito cuando x tiende a x_0 se expresa con el siguiente límite y posteriormente su interpretación matemática \lim_{x \to x_0} f(x) = +\infty

Para todo número \epsilon > 0, existe un número \delta > 0 tal que
si 0 < |x-x_0| < \delta entonces f(x) > \epsilon

Si consideramos ahora los valores de x mayores que -1, por ejemplo: -\frac{1}{2}, su imagen será -2; -\frac{1}{3}, su imagen será -3; -\frac{1}{4}, su imagen será -4; y así sucesivamente notamos que a medida que nos vamos acercando al cero, las imágenes decrecen cada vez más. La función alcanzará valores negativos muy grandes que no pueden ser cuantificables, esta idea la denotamos con el menos infinito y la expresamos con el siguiente límite \lim_{x \to 0^-} \frac{1}{x} = -\infty

Formalmente, diremos que una función f(x) tiende a menos infinito cuando x tiende a x_0 se expresa con el siguiente límite y posteriormente su interpretación matemática \lim_{x \to x_0} f(x) = -\infty

Para todo número \epsilon > 0, existe un número \delta > 0 tal que
si 0 < |x-x_0| < \delta entonces f(x) < -\epsilon

De forma general, diremos que una función f(x) tiende a infinito cuando x tiende a x_0 se expresa con el siguiente límite y posteriormente su interpretación matemática

Para todo número \epsilon > 0, existe un número \delta > 0 tal que
si 0 < |x-x_0| < \delta entonces |f(x)| > \epsilon



Límite finito con variable infinita

Supongamos ahora que queremos estudiar el comportamiento de una función f(x) cuando la variable x adquiere valores muy altos. Supongamos que usted está en una fiesta de cumpleaños y que al final a usted le corresponde picar la torta (pastel): Si hay un sólo niño, le da toda la toda torta a ese niño; si hay dos niños, le da \frac{1}{2} de torta a cada niño; si hay tres niños, le da \frac{1}{3} de torta a cada niño; así sucesivamente. Notando que mientras más niños haya en la fiesta, más pequeño es el pedazo que le corresponde a cada uno, sin embargo, ningún niño se quedará sin torta.

Esta situación la podemos describir considerando la función f(x) = \frac{1}{x}, notando entonces que a medida que crece el valor de x, esta función decrece, es decir, la tendencia que tiene esta función es la de acercarse a cero. Tomando en cuenta que por más grande que sea el valor de x esta función nunca es igual a cero. Esta idea se expresa con el siguiente límite

\lim_{x \to \infty} \frac{1}{x} = 0

Formalmente, diremos que una función f(x) tiende a un número real L cuando x tiende a infinito se expresa con el siguiente límite y posteriormente su interpretación matemática \lim_{x \to +\infty} f(x) = L

Para todo número \epsilon > 0, existe un número \delta > 0 tal que
si x > \delta entonces |f(x) - L| < \epsilon

Si consideramos nuevamente la función f(x) = \frac{1}{x}, también notamos que a medida que crece el valor de x pero hacia los números negativos, la tendencia que tiene esta función es la de acercarse a cero. Tomando en cuenta que por más grande que sea el valor de x esta función nunca es igual a cero. Esta idea se expresa con el siguiente límite

\lim_{x \to -\infty} \frac{1}{x} = 0

Formalmente, diremos que una función f(x) tiende a un número real L cuando x tiende a menos infinito se expresa con el siguiente límite y posteriormente su interpretación matemática \lim_{x \to -\infty} f(x) = L

Para todo número \epsilon > 0, existe un número \delta > 0 tal que
si x < -\delta entonces |f(x) - L| < \epsilon

De forma general, diremos que una función f(x) tiende a un número real L cuando x tiende a infinito se expresa con el siguiente límite y posteriormente su interpretación matemática

Para todo número \epsilon > 0, existe un número \delta > 0 tal que
si |x| > \delta entonces |f(x) - L| < \epsilon



Límite infinito con variable infinita

Consideremos la función identidad f(x)=1, esta función corresponde al 1 con el 1, al 2 con 2, al 3 con 3 y así sucesivamente identificará a cada número real con él mismo así que a medida que crece la variable x también crecerá la función. Particularmente, identificará un número muy grande con él mismo, Esta idea se expresa con el siguiente límite

\lim_{x \to +\infty} x = +\infty

Formalmente, diremos que una función f(x) tiende más infinito cuando x tiende a más infinito se expresa con el siguiente límite y posteriormente su interpretación matemática

\lim_{x \to +\infty} f(x) = +\infty

Para todo número \epsilon > 0, existe un número \delta > 0 tal que
si x > \delta entonces f(x) > \epsilon

Siguiendo esta idea, diremos que una función f(x) tiende menos infinito cuando x tiende a menos infinito se expresa con el siguiente límite y posteriormente su interpretación matemática

\lim_{x \to -\infty} f(x) = -\infty

Para todo número \epsilon > 0, existe un número \delta > 0 tal que
si x < -\delta entonces f(x) < -\epsilon

De forma general, diremos que una función f(x) tiende a infinito cuando x tiende a infinito se expresa con el siguiente límite y posteriormente su interpretación matemática

Para todo número \epsilon > 0, existe un número \delta > 0 tal que
si |x| > \delta entonces |f(x)| > \epsilon


«Esta pizza tomará por siempre»

Límites Laterales

  1. Límite por la izquierda
  2. Límite por la derecha
  3. Ejemplos
    1. Ejemplo 1
    2. Ejemplo 2
    3. Ejemplo 3

Al calcular el límite cuando la variable x tiende a un punto x_0, podemos encontrarnos con el hecho de que la variable no esté definida en todos los puntos alrededor de x_0 pues puede ocurrir que esté definida sólo para los valores mayores que x_0 o sólo para los valores menores que x_0. También puede ocurrir que esté definida de una forma de un lado y de otra forma del otro lado. Entonces, en ocasiones pudiera ser necesario especificar el cálculo de este tipo de límites. Considerando una función f(x), entonces

También pudiera interesarte

Límite por la izquierda

Diremos que el límite de f(x) cuando x tiende a x_0 por la izquierda es igual a un número L, es el estudio del comportamiento de f(x) para valores de x mayores que x_0 y muy cercanos a x_0, concluyendo que el conjunto de las imágenes de estos valores de x están muy cercanos a L. Formalmente se representa así

\displaystyle \lim_{x \to x_0^{-}} f(x) = L

Para todo número \epsilon > 0, existe un número \delta > 0 tal que
si -\delta < x-x_0 < 0 entonces |f(x) - L| < \epsilon

Límite por la derecha

Diremos que el límite de f(x) cuando x tiende a x_0 por la derecha es igual a un número L, es el estudio del comportamiento de f(x) para valores de x menores que x_0 y muy cercanos a x_0, concluyendo que el conjunto de las imágenes de estos valores de x están muy cercanos a L. Formalmente se representa así

\displaystyle \lim_{x \to x_0^{+}} f(x) = L

Para todo número \epsilon > 0, existe un número \delta > 0 tal que
si 0 < x-x_0 < \delta entonces |f(x) - L| < \epsilon

Hay que notar que x_0^- y x_0^+ son notaciones para indicar si se está calculando el límite por la izquierda o por la derecha, respectivamente. Así que hay que considerar estos signos que aparecen como un supra-índice no afectan el signo de la variable de ninguna forma.

El cálculo de este tipo de límites se efectúa de la misma forma en que hemos calculado los límites hasta ahora, simplemente sustituyendo el valor del límite. Considere entonces algunos ejemplos sencillos para dejar clara esta idea.

Ejemplos

Ejemplo 1

Considere la función f(x) = \sqrt{x}-3, calcule su límite cuando x tiende a 0.

Es importante notar que el dominio de esta función es el conjunto de todos los números reales mayores o iguales que cero, por lo tanto, no tiene sentido estudiar su comportamiento para los números menores que 0. Entonces, es necesario especificar que debemos calcular este límite cuando la variable x tiene de a 0 por la derecha:

\lim_{x \to 0^+} \sqrt{x}-3 = \sqrt{0}-3 = 0-3 = -3

Ejemplo 2

Considere la función f: (2,10) \longrightarrow \mathbb{R} definida como

f(x) = \log_8(x-2) , calcule su límite cuando x tiende a 10.

Notemos que no tiene sentido estudiar su comportamiento para los números mayores que 10. Entonces, es necesario especificar que debemos calcular este límite cuando la variable x tiene de a 10 por la izquierda:

\lim_{x \to 10^-} \log_8(x-2) = \log_8(10-2) = \log_8(8) = 1

Ejemplo 3

Consideremos ahora una función definida por partes de la siguiente forma

calcule su límite cuando x tiende a -2 por la derecha.

Ya que la función tiene dos definiciones alrededor de 2 debemos tomar en cuenta esto antes de sustituir. Entonces, si consideramos

\lim_{x \to -2^+} f(x)

Debemos tomar en cuenta que al calcular el límite por la derecha, entonces estamos considerando los valores cercanos a -2 pero que además son mayores que -2 por lo tanto, la función está definida como por la expresión x+7, así

\lim_{x \to -2^+} f(x) = \lim_{x \to -2^+} x+7 = -2+7 = 5


Finalmente es importante mencionar, que el límite de una función f(x) cuando x tiende x_0 existe cuando sus límites laterales existen y son iguales, es decir, cuando


\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)


Y en este caso, diremos que el valor de \lim_{x \to x_0} f(x) será igual al valor de sus límites laterales.