Diagramas Sagitales: Relaciones

  1. Relaciones
    1. Dominio y Rango de una Relación
    2. Ejemplos
      1. Ejemplo 1
      2. Ejemplo 2
  2. Diagramas Sagitales
    1. Ejemplos
      1. Ejemplo 3
      2. Ejemplo 4
      3. Ejemplo 5

Al definir los conjuntos, nos hemos apoyado en los Diagramas de Venn para estudiar las operaciones entre ellos, tales como unión, intersección o complemento de conjuntos. Siguiendo esta representación ilustrada de los conjuntos, es posible definir otro tipo de diagramas que ayudan a estudiar las correspondencias que podemos establecer entre los elementos de dos conjuntos.

También pudiera interesarte

Relaciones

Diremos que estos dos conjuntos están relacionados si podemos establecer correspondencias entre los elementos de uno con los elementos del otro. Por ejemplo, en una fiesta de cumpleaños, podemos corresponder a cada niño con un gorro de cumpleaños diferente, de esta forma, establecemos una relación entre el conjunto de los niños y el conjunto de los gorros de cumpleaños.

Formalmente, si consideramos dos conjuntos A y B, identificaremos la correspondencia que existe entre un elemento a del conjunto A con un elemento b del conjunto B con el par ordenado (a,b) (decimos par ordenado para señalar que el primer elemento pertenece al primer conjunto y el segundo elemento pertenece al segundo conjunto).

Más aún, diremos que una relación del conjunto A con el conjunto B es el conjunto de todas las correspondencias entre los elementos de A y B, es decir, el conjunto de todos los pares ordenados (a,b) tales que a está en A y que b está en B generalmente se identifica con la letra r y se denota de la siguiente forma

r : A \rightarrow B.

Dominio y Rango de una Relación

Al definir relaciones, podemos identificar algunos de los elementos que las componen:

  • Al conjunto A se le conoce como el conjunto de salida
  • Al conjunto B se le conoce como el conjunto de llegada.
  • Al conjunto de elementos de A correspondido con elementos de B se le conoce como el dominio o conjunto de las preimágenes.
  • Si un elemento de a de A está correspondido con un elemento de b de B, diremos que a es una preimagen de b.
  • Al conjunto de elementos de B correspondido con elementos de A se le conoce como el rango o conjunto de las imágenes.
  • Si un elemento de b de B está correspondido con un elemento de a de A, diremos que b es una imagen de a.
Anuncios

Ejemplos

Ejemplo 1

Considere el conjunto A conformado por tres niños en una fiesta de cumpleaños: Ana, José y Roberto. Por otra parte, consideremos el conjunto B conformado por los gorros de colores: verde, morado, rosado, azul.

Supongamos que a Ana le corresponde el gorro verde, a José le corresponde el gorro morado y a Roberto le corresponde el gorro azul.

Esta correspondencia establece una relación entre el conjunto de los niños y el conjunto de los gorros, así, podemos expresar la relación r : A \rightarrow B como el conjunto de los siguientes pares ordenados:

r = { (Ana, Verde) ; (José, Morado) ; (Roberto, Azul) }

Siempre es importante identificar el dominio y rango de una relación, pues así podemos identificar con mayor facilidad los elementos involucrados en las correspondencias. En este caso, tenemos que,

  • El dominio es {Ana, José, Roberto}.
  • El rango es {Verde, Morado, Azul}.

Ejemplo 2

Considere el conjunto A conformado por 5 marcas de teléfonos celulares: Pixel, Samsung, Xiaomi, iPhone y Orinoquia. Por otra parte, consideremos el conjunto B conformado por características de teléfonos celulares: Cámara HD y Conectividad 5G.

Supongamos que los fabricantes de estas marcas, añaden las características a los teléfonos de la siguiente forma: Pixel tiene todas las características, Samsung tiene Conectividad 5G y iPhone tiene Cámara HD.

Esta correspondencia establece una relación entre el conjunto de marcas y el conjunto características, así, podemos expresar la relación r : A \rightarrow B como el conjunto de los siguientes pares ordenados:

r = { (Pixel, Cámara HD) ; (Pixel, Conectividad 5G) ; (Samsung, Conectividad 5G) ; (iPhone, Cámara HD)}

Siempre es importante identificar el dominio y rango de una relación, pues así podemos identificar con mayor facilidad los elementos involucrados en las correspondencias. En este caso, tenemos que,

  • El dominio es {Pixel, Samsung, iPhone}.
  • El rango es {Cámara HD, Conectividad 5G}.

Las relaciones se pueden apreciar con mayor claridad cuando las ilustramos, veamos como hacer esto.

Anuncios

Diagramas Sagitales

Los diagramas sagitales consisten en ilustraciones que permiten representar las relaciones entre los elementos de dos conjuntos identificando los siguientes elementos:

  • Los conjuntos se representan con círculos u óvalos.
  • Los elementos de los conjuntos se representan con puntos.
  • La relación entre elementos, se representan con líneas o flechas.

Consideremos en los siguientes ejemplos para ilustrar relaciones entre dos conjuntos usando diagramas sagitales.

Ejemplos

Ejemplo 3

Considere el conjunto A conformado por cinco niños en un salón de clases: María, Pedro, Jerick, Laura y Fabiana. Por otra parte, consideremos el conjunto B conformado por cinco actividades que hay que desarrollar en el salón de clases a una determinada hora: leer, escribir, sumar, restar y dibujar.

Supongamos que a María le corresponde leer, a Pedro le corresponde escribir, a Jerick le corresponde sumar, a Laura le corresponde restar y a Fabiana le corresponde dibujar.

Esta correspondencia establece una relación entre el conjunto de niños y el conjunto actividades, así, podemos expresar la relación r : A \rightarrow B como el conjunto de los siguientes pares ordenados:

r = { (María, Leer) ; (Pedro, Escribir) ; (Jerick, Sumar) ; (Laura, Restar) ; (Fabiana, Dibujar) }

Pero además, podemos ilustrar esta relación con un diagrama sagital, de la siguiente manera:

Diagrama Sagital de una Relación | totumat.com

Siempre es importante identificar el dominio y rango de una relación, pues así podemos identificar con mayor facilidad los elementos involucrados en las correspondencias. En este caso, tenemos que,

  • El dominio es {María, Pedro, Jerick, Laura, Fabiana}.
  • El rango es {Leer, Escribir, Sumar, Restar, Dibujar}.
Anuncios

Ejemplo 4

Considere el conjunto A conformado por cuatro automóviles enumerados con 1, 2, 3 y 4. Por otra parte, consideremos el conjunto B conformado por tres colores: amarillo, azul y rojo.

Supongamos que estos automóviles deben ser pintados de uno o dos colores: el 1 es pintado de amarillo, el 2 de amarillo y azul, el 3 y 4 de rojo.

Esta correspondencia establece una relación entre el conjunto de automóviles y el conjunto colores, así, podemos expresar la relación r : A \rightarrow B como el conjunto de los siguientes pares ordenados:

r = { (1, Amarillo) ; (2, Amarillo) ; (2, Azul) ; (3, Rojo) ; (4, Rojo) }

Pero además, podemos ilustrar esta relación con un diagrama sagital, de la siguiente manera:

Diagrama Sagital de una Relación | totumat.com

Siempre es importante identificar el dominio y rango de una relación, pues así podemos identificar con mayor facilidad los elementos involucrados en las correspondencias. En este caso, tenemos que,

  • El dominio es {1,2,3,4}.
  • El rango es {Amarillo, Azul, Rojo}.

Ejemplo 5

Considere el conjunto A conformado por los números 1, 2, 3, 4, 5, 6. Por otra parte, consideremos el conjunto B conformado por los números: 1, 2, 3, 4.

Diremos que un elemento a del conjunto A está relacionado con un elemento b del conjunto B si a es un divisor de b, es decir, tal que la división \frac{b}{a} es exacta.

Esta correspondencia establece una relación entre el conjunto A y el conjunto B, así, podemos expresar la relación r : A \rightarrow B como el conjunto de los siguientes pares ordenados:

r = { (1, 1) ; (1, 2) ; (1, 3) ; (1, 4) ; (2, 2) ; (2,4) ; (3,3) ; (4,4) }

Pero además, podemos ilustrar esta relación con un diagrama sagital, de la siguiente manera:

Diagrama Sagital de una Relación | totumat.com

Siempre es importante identificar el dominio y rango de una relación, pues así podemos identificar con mayor facilidad los elementos involucrados en las correspondencias. En este caso, tenemos que,

  • El dominio es {1,2,3,4}.
  • El rango es {1,2,3,4}.

Combinatorias

Suponga que usted está desarrollando un proyecto y debe designar una comisión de tres personas para llevar a cabo ciertas tareas. Entonces, considerando cinco personas, ¿de cuántas formas se puede conformar la comisión? Para responder a esta pregunta, debemos tener clara una definición.

También pudiera interesarte

Considerando una colección de objetos distintos, una r-combinación de estos es simplemente una forma de escoger r de estos objetos (sin importar el orden), en términos de conjuntos, podemos decir que una r-combinación es cualquier subconjunto de tamaño r de la colección de objetos. Por ejemplo, si tenemos cinco bolas, una azul, una roja, una amarilla, una verde y una naranja; una 3-combinación es la siguiente:

r-combinación de bolas | totumat.com

Entonces, considerando todas las 3-combinaciones, incluyendo la que ya vimos, tenemos:

r-combinación de bolas | totumat.com

En total podemos contar diez 3-combinaciones, pero listar todas las combinaciones posibles para después contarlas puede resultar en un proceso engorroso cuando tenemos muchos más objetos distintos, es por esto que debemos recurrir a los métodos de conteo que ya hemos visto. Entonces, si queremos tomar tres bolas de las cinco bolas, contemos primero todas las 3-permutaciones posibles:

  • Para fijar la primera bola, podemos considerar cinco opciones. Notemos que si contamos combinaciones, cualquiera de las tres posiciones es indiferente.
r-combinación de bolas | totumat.com
  • Para fijar la segunda bola, como ya hemos fijado una, podemos considerar sólo cuatro opciones. Notemos que si contamos combinaciones, cualquiera de las dos posiciones restantes es indiferente.
r-combinación de bolas | totumat.com
  • Para fijar la tercera bola, como ya hemos fijado dos, podemos considerar sólo tres opciones. Notemos que si contamos combinaciones, la última posición es indiferente.
r-combinación de bolas | totumat.com

El Método del Producto nos indica que la cantidad total de 3-permutaciones será el producto de las opciones para cada posición, es decir, 5 \cdot 4 \cdot 3 = 60.

r-combinación de bolas | totumat.com

Pero debemos tomar en cuenta que la posición en la que estas se encuentran es indiferente, el Método del Producto nos indica que la cantidad total posiciones indiferentes será el producto de las posiciones indiferentes cuando se ha fijado cada bola, es decir, 3 \cdot 2 \cdot 1 = 6.

r-combinación de bolas | totumat.com

De esta forma, el Método de la División nos indica que la cantidad de 3-combinaciones, será la división de todas las 3-permutaciones entre todos los casos indiferentes, es decir,

\frac{5 \cdot 4 \cdot 3}{3 \cdot 2 \cdot 1} = \frac{60}{6} = 10

De formar general, si consideramos n objetos distintos, el total de r-combinaciones distintas se calcula con la siguiente división:

\frac{n \ \cdot \ (n-1) \ \cdot \ \ldots \ \cdot \ (n - r + 1)}{r \ \cdot \ (r-1) \ \cdot \ \ldots \ \cdot \ 1}

Las r-combinaciones de n objetos se denota de la forma C(n,r), y usando permutaciones, también podemos reescribir el cociente que las definen de la siguiente forma:

\frac{P(n,r)}{P(r,r)}

Usando expresiones factoriales, también podemos expresar las r-combinaciones como el coeficiente binomial:

\binom{n}{r} = \frac{n!}{r!(n-r)!}

Tomando en cuenta que el factorial de cero es igual a uno, es decir, $latex0! = 1$. Entonces, notamos que una n-combinación de una colección de n objetos, es exactamente igual a uno. Veamos con algunos ejemplos como contar todas las r-combinaciones en distintas situaciones.

Anuncios

Ejemplos

Ejemplo 1

Suponga que usted está desarrollando un proyecto y debe designar una comisión de tres personas para llevar a cabo ciertas tareas. Entonces, considerando cinco personas, ¿de cuántas formas se puede conformar la comisión?

Este problema se puede abordar contando todas las 3-combinaciones posibles de cinco objetos y estas son:

C(5,3) = \frac{5 \cdot 4 \cdot 3}{3 \cdot 2 \cdot 1} = 10

Ejemplo 2

Considerando una bolsa con siete bolas de distinto color, si se sacan cuatro bolas, ¿de cuántas formas distintas se pueden sacar cuatro de ellas?

Este problema se puede abordar contando todas las 4-combinaciones posibles de siete objetos y estas son:

C(7,4) = \frac{7 \cdot 6 \cdot 5 \cdot 4}{4 \cdot 3 \cdot 2 \cdot 1} = 35

Ejemplo 3

En una carrera de 100 metros planos compiten ocho personas, si a las tres últimas personas se les da un premio por participar indistintamente, ¿de cuántas formas posibles pueden otorgarse estos premios al culminar esta carrera?

Este problema se puede abordar contando todas las 3-combinaciones posibles de ocho objetos y estas son:

C(8,3) = \frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1} = 56


Permutaciones

Suponga que usted está desarrollando un proyecto y debe designar una comisión de tres personas para llevar a cabo ciertas tareas. Esta comisión debe tener un coordinador, un secretario y un vocero. Entonces, considerando tres personas, ¿de cuántas formas se puede conformar la comisión? Para responder a esta pregunta, debemos tener clara una definición.

También pudiera interesarte

Considerando una colección de objetos distintos, una permutación de estos es simplemente una forma de ordenarlos uno tras otro. Por ejemplo, si tenemos tres bolas, una azul, una roja y una amarilla, una permutación es la siguiente:

Permutaciones de bolas de colores | totumat.com

Y reordenándolas, consideremos todas las permutaciones, incluyendo la que ya vimos

Permutaciones de bolas de colores | totumat.com

En total podemos contar seis permutaciones, pero listar todas las permutaciones posibles para después contarlas puede resultar en un proceso engorroso cuando tenemos muchos más objetos distintos, es por esto que debemos entonces recurrir a los métodos de conteo que ya hemos visto. Entonces, si queremos ordenar estas tres bolas:

  • Para fijar la primera bola, podemos considerar tres opciones.
Permutaciones de bolas de colores | totumat.com
  • Para fijar la segunda bola, como ya hemos fijado una, podemos considerar sólo dos opciones.
Permutaciones de bolas de colores | totumat.com
  • Para fijar la tercera bola, como ya hemos fijado dos, podemos considerar sólo una opción.
Permutaciones de bolas de colores | totumat.com

El Método del Producto nos indica que la cantidad total de permutaciones será el producto de las opciones para cada posición, es decir, 3 \cdot 2 \cdot 1 = 6.

Permutaciones de bolas de colores | totumat.com

De formar general, si consideramos n objetos distintos, el total de permutaciones distintas se calcula con el siguiente producto:

n \ \cdot \ (n-1) \ \cdot \ (n-2) \ \cdot \ \ldots \ \cdot \ 3 \ \cdot \ 2 \ \cdot \ 1

Este producto se puede resumir usando la notación de factorial, que se expresa con un signo de exclamación de la siguiente forma:

n!

Veamos con algunos ejemplos como contar todas las permutaciones en distintas situaciones.

Anuncios

Ejemplos

Ejemplo 1

Suponga que usted está desarrollando un proyecto y debe designar una comisión de tres personas para llevar a cabo ciertas tareas. Esta comisión debe tener un coordinador, un secretario y un vocero. Entonces, considerando tres personas, ¿de cuántas formas se puede conformar la comisión?

Este problema se puede abordar contando todas las formas en que se pueden ordenar tres personas, es decir, contando todas las permutaciones posibles de tres objetos y estas son:

3! = 3 \cdot 2 \cdot 1 = 6

Ejemplo 2

Considerando una bolsa con cinco bolas de distinto color, si se sacan todas una a una, ¿de cuántas formas distintas se pueden sacar?

Este problema se puede abordar contando todas las formas en que se pueden ordenar cinco bolas de distinto color, es decir, contando todas las permutaciones posibles de cinco objetos y estas son:

5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120

Ejemplo 3

En una carrera de 100 metros planos compiten ocho personas, ¿de cuántas formas posibles puede culminar esta carrera?

Este problema se puede abordar contando todas las formas en que se pueden ordenar ocho personas, es decir, contando todas las permutaciones posibles de ocho objetos y estas son:

8! = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 40320


Anuncios

r-Permutaciones

Habiendo definido las permutaciones de una colección de objetos, pueden surgir otro tipo de situaciones. Suponga que usted está desarrollando un proyecto y debe designar una comisión de tres personas para llevar a cabo ciertas tareas. Esta comisión debe tener un coordinador, un secretario y un vocero. Entonces, considerando 5 personas, ¿de cuántas formas podemos conformar la comisión? Para responder a esta pregunta, debemos tener clara una definición.

Considerando una colección de objetos distintos, una r-permutación de estos es simplemente una forma de ordenar r de estos objetos uno tras otro. Por ejemplo, si tenemos cuatro bolas, una azul, una roja, una amarilla y una verde. Una 3-permutación es la siguiente:

r-Permutaciones de bolas de colores | totumat.com

Y reordenándolas, consideremos todas las 3-permutaciones, incluyendo la que ya vimos

r-Permutaciones de bolas de colores | totumat.com

En total podemos contar veinticuatro permutaciones, pero listar todas las permutaciones posibles para después contarlas puede resultar en un proceso engorroso cuando tenemos muchos más objetos distintos, es por esto que debemos entonces recurrir a los métodos de conteo que ya hemos visto. Entonces, si queremos ordenar tres bolas de las cuatro bolas:

  • Para fijar la primera bola, podemos considerar cuatro opciones.
r-Permutaciones de bolas de colores | totumat.com
  • Para fijar la segunda bola, como ya hemos fijado una, podemos considerar sólo tres opciones.
r-Permutaciones de bolas de colores | totumat.com
  • Para fijar la tercera bola, como ya hemos fijado dos, podemos considerar sólo dos opciones.
r-Permutaciones de bolas de colores | totumat.com

El Método del Producto nos indica que la cantidad total de 3-permutaciones será el producto de las opciones para cada posición, es decir, 4 \cdot 3 \cdot 2 = 24.

r-Permutaciones de bolas de colores | totumat.com

De formar general, si consideramos n objetos distintos, el total de r-permutaciones distintas se calcula con el siguiente producto:

n \ \cdot \ (n-1) \ \cdot \ (n-2) \ \cdot \ \ldots \ \cdot \ (n - r + 1)

Las r-permutaciones de n objetos se denota de la forma P(n,r), y usando expresiones factoriales, también podemos reescribir el producto que las definen de la siguiente forma:

\dfrac{n!}{(n-r)!}

Tomando en cuenta que el factorial de cero es igual a uno, es decir, 0! = 1. Entonces, notamos que una n-permutación de una colección de n objetos, es justamente una permutación como la hemos definido originalmente. Veamos con algunos ejemplos como contar todas las r-permutaciones en distintas situaciones.

Anuncios

Ejemplos

Ejemplo 4

Suponga que usted está desarrollando un proyecto y debe designar una comisión de tres personas para llevar a cabo ciertas tareas. Esta comisión debe tener un coordinador, un secretario y un vocero. Entonces, considerando cinco personas, ¿de cuántas formas se puede conformar la comisión?

Este problema se puede abordar contando todas las 3-permutaciones posibles de cinco objetos y estas son:

P(5,3) = 5 \cdot 4 \cdot 3 = 60

Ejemplo 5

Considerando una bolsa con siete bolas de distinto color, si se sacan cuatro bolas una a una, ¿de cuántas formas distintas se pueden sacar cuatro de ellas?

Este problema se puede abordar contando todas las 4-permutaciones posibles de siete objetos y estas son:

P(7,4) = 7 \cdot 6 \cdot 5 \cdot 4 = 840

Ejemplo 6

En una carrera de 100 metros planos compiten ocho personas, ¿de cuántas formas posibles pueden otorgarse las medallas de oro, plata y bronce al culminar esta carrera?

Este problema se puede abordar contando todas las 3-permutaciones posibles de ocho objetos y estas son:

P(8,3) = 8 \cdot 7 \cdot 6 = 336


(me)^2 totumat.com

Memes Matemáticos – Febrero 2021

La popularidad de un meme refleja la forma en que la sociedad comprende un hecho y las matemáticas no se escapan de esto, pues la comunidad matemática en las redes sociales ha aumentado su presencia en los últimos meses. Una vez culminado el mes más corto del año, traemos para ti una compilación de los mejores memes matemáticos de Febrero 2021.

También pudiera interesarte

Derivar e Integrar

Hay un dicho que recita lo siguiente: «deriva quien sabe, integra quién puede» y aunque estas son frases tontas usadas por algunos profesores para asustar a sus alumnos, la realidad es que derivar e integrar es algo manejable para los que desarrollan sus estudios en cualquier ámbito matemático. Sin embargo, cualquier persona que esté fuera de esta área no tendrá la misma mínima idea de como derivar e integrar. Esto es lo que expone u/heisenberg09102000, usando la escena de «Yo, Robot» donde se puede leer,

  • ¿Por qué crees que los animales son inferiores?
  • ¿Pueden ellos resolver integrales y derivadas?
  • ¿Puedes tú?
Post image

En el mismo orden de ideas, derivar funciones puede resultar sencillo porque en muchos casos basta con aprender las reglas de derivación cuando nos topamos con operaciones básicas entre funciones, pero no pasa con los mismo al integrar funciones, pues si bien podemos definir algunas reglas para algunas funciones, no se presenta un caso general para el producto de dos funciones, esto es lo que expone u/Syberspaze, en la imagen podemos leer

Cálculo
(un libro grueso)

Cálculo si
\int f(x) \cdot g(x) \ dx \int f(x) \ dx \cdot \int \ dx
(un libro delgado)

Post image

También es algo que nos expone el ingenioso caricaturista de XKCD con la siguiente diagrama de flujo sobre como calcular derivadas y como calcular integrales. Les debo la traducción por lo intrincada que es la viñeta.

Differentiation and Integration

Más sobre el cálculo de integrales, tal como lo expone u/heisenberg09102000, calcular a mano \int \sqrt{tan(x)} \ dx, qué miedo.

Post image

85/17

Cuando efectuamos operaciones entre números, particularmente, divisiones entre números, puede que no prestemos mucha atención a los resultados y usando calculadoras, menos aún, pues la idea es ir solucionar el problema que se nos presenta. Pero si nos detenemos a pensar sobre algunos de estos casos, por ejemplo, 85 y 17, son dos números que parecieran no estar relacionados de ninguna forma, sin embargo, la división 85/17 es exactamente 5 🤯. Eso es lo que expuso u/Malthegudum:

Me acabo de dar cuenta que 85/17 es igual a un número entero, nunca me sentí más incómodo en mi vida.

Post image
Anuncios

L’Hopital

Cuando se calculan límites, las derivadas pueden resultar de mucha utilidad para facilitar las cuentas, ese es el caso de la Regla de L’Hopital, pues si la usamos cuidadosamente, nos permite determinar el límite cuando al evaluar la función en cuestión, obtenemos indeterminaciones de la forma cero sobre cero o infinito sobre infinito. Esto es lo que expone u/Krzug en la siguiente imagen:

Post image

Desconfía de tu propia sombra

Este es un ejemplo de razones por las cuales un dibujo no es confiable para una demostración matemática, también una razón para mirar con criticismo los resultados que nos pudiera mostrar un software usado para hacer cálculos o para graficar figuras geométricas. Esto es lo que expone u/mrbob8888 en la primera imagen, señalando que el software asume que \infty = 2 y lo que expone u/scienceisfun112358 en la segunda imagen, señalando que el software marca un ángulo (visualmente) recto como de 100°.

Post image
Anuncios

Mínimos

El uso de derivadas es muy importante para el estudio del comportamiento de una función, particularmente el criterio de la primera derivada y el criterio de la segunda derivada para determinar los extremos locales de una función. Esto es lo que señala u/button_down_shirt haciendo referencia la escena del Señor de Los Anillos, en la que Pippin pregunta por el segundo desayuno, en la imagen se puede leer:

Cuando tu amigo piensa que encontró un mínimo local

¿Y qué hay de la segunda derivada?

Post image

La distancia entre dos puntos

El Método del Discriminante permite calcular con precisión las raíces de un polinomio cuadrático, sin embargo, en ocasiones la solución salta a la vista, así que usar la fórmula cuadrática es como matar una mosca con un cañón. Esto es lo que expone u/heisenberg09102000, en la imagen se puede leer observar:

Estudiante de Matemáticas

frac{-b pm sqrt{b^2 - 4ac}}{2a}

x^2 + 2x = 0

Post image
Anuncios

Hay un impostor entre nosotros

¿Puedes detectar al impostor? La primera imagen compartida por u/mehrabha y la segunda por James Preston en el grupo Mathematical Mathematics Memes.

Post image
May be a cartoon of text

Todos mis Pokémon son
\{ f(x) = x^{p} : \int f(x) \ dx = \frac{x^{p+1}}{p+1} + C

Te quiero -1/12 ❤

La Hipótesis de Riemann ha generado mucha discusión en la comunidad matemática, pero también ha generado mucha confusión entre aquellos que están aprendiendo. Básicamente, se ha definido la Función Zeta de Riemann para números complejos con parte real mayor que uno, de la siguiente forma:

\xi (s) = \sum_{n=1}^{\infty} \frac{1}{n^s}

El problema que se plantea es el de calcular las raíces de esta función, es decir, los valores para los cuales \xi (s) = 0. Al considerar esta función, notemos que el caso que s=-1, esta función se puede reescribir como la sumatoria

\sum_{n=1}^{\infty} n

Sin embargo, al considerar la función como regla de correspondencia (no como la suma de todos los números naturales) a través de método de convergencia, esta corresponde a s=-1 con -\frac{1}{12}. Esta confusión para los nuevos estudiantes de matemáticas es la que expone el usuario u/panther1910, pues podemos ver en la siguiente imagen que

Primer Panel

¿Qué tanto me quieres?

Segundo Panel

-\frac{1}{12}

Post image
Anuncios

¿Crees que se nos escapó un meme? ¡Comparte tu mejor meme en los comentarios!

Compartir tu ubicación en tiempo real usando Google Maps

Si tienes una reunión con tu familia o amigos, es útil enviarles tu ubicación para que sepan que vas en camino o para señalar donde será la reunión. Sin embargo, compartir tu ubicación puede marcar la diferencia en una situación de vida o muerte.

Últimamente he leído noticias estremecedoras sobre mujeres que han sido secuestradas (posteriormente violadas o asesinadas) en la calle, en falsas entrevistas de trabajo o por sus parejas; he visto algunos casos en que la víctima ha tenido la oportunidad de informar a algún familiar sobre su ubicación pero no siempre se puede hacer esto directamente.

También pudiera interesarte

Por situaciones como esta les enseñaré como compartir su ubicación en tiempo real usando Google Maps:

Lo primero que deben hacer es descargar la aplicación, ya sea para Android o para iOS. Una vez descargada la aplicación y registrarse en ella con su cuenta de google, podrán acceder a las opciones de perfil haciendo click/tap en su foto de perfil.

Compartir tu ubicación en tiempo real usando Google Maps | totumat.com

Una vez que han abierto las opciones de perfil, van a ubicar la opción de compartir ubicación, en mi caso dice location sharing porque la tengo configurada en inglés (funciona para practicar el idioma).

Compartir tu ubicación en tiempo real usando Google Maps | totumat.com

Haciendo click/tap en esta opción entrarán a una sección que les permitirá añadir un nuevo contacto con el cual compartir su ubicación y por supuesto debe ser un familiar o una persona de confianza, pues no queremos que cualquier persona pueda consultar nuestra ubicación.

Compartir tu ubicación en tiempo real usando Google Maps | totumat.com

Seleccionan la cantidad de tiempo por la que quieran compartir su ubicación, en mi caso particular, seleccioné la opción «until you turn this off» (hasta que lo apague) para compartir mi ubicación con todo mi núcleo familiar.

Compartir tu ubicación en tiempo real usando Google Maps | totumat.com

Seleccionan la persona con la que quieren compartir su ubicación y ya está listo. La persona con la que comparten su ubicación podrá ver su ubicación en tiempo real (quizás con un minuto de desfase) y además podrá ver la carga de batería del teléfono celular. Verán algo así:

Compartir tu ubicación en tiempo real usando Google Maps | totumat.com

Pueden escoger dejar de compartir su ubicación cuando ustedes deseen y Google les enviará periódicamente un email recordando con qué personas se está compartiendo la ubicación. Espero que esta información les sea de ayuda.