Función de Costos Conjuntos

Suponga que un fabricante produce x unidades de un artículo X y y unidades de un artículo Y, entonces el costo total de producir esas unidades se puede expresar como una función c que depende de las variables x y y, que llamaremos Función de Costos Conjuntos y la denotaremos de la siguiente forma

c(x,y)

Una vez que fijamos la producción del producto Y, podemos calcular la razón de cambio de los costos conjuntos respecto al producto X calculando la derivada parcial de la función c(x,y) respecto a x, es decir, la función de costo marginal respecto a la variable x

\dfrac{\partial c}{\partial x}

Por ejemplo, si c se expresa en perolitos y \frac{\partial c}{\partial x} = 1500, entonces el costo de producir una unidad adicional de X cuando el nivel de producción de Y es fijo, es aproximadamente de 1500 perolitos.

Nota: Perolitos es la moneda oficial de totumat.

En cambio, si fijamos la producción del producto X, podemos calcular la razón de cambio de los costos conjuntos respecto al producto Y calculando la derivada parcial de la función c(x,y) respecto a y, es decir, la función de costo marginal respecto a la variable y

\dfrac{\partial c}{\partial y}

Por ejemplo, si c se expresa en perolitos y \frac{\partial c}{\partial y} = 2000, entonces el costo de producir una unidad adicional de Y cuando el nivel de producción de X es fijo, es aproximadamente de 1500 perolitos.

Aunque durante este clase nos limitaremos a dos variables, pero de forma general si un fabricante produce n artículos entonces la función de costos conjuntos constará de n variables y habrá n funciones de costo marginal.

Ejemplo

Una empresa produce Plátano Chips de dos sabores: salado y natural. Suponga que la función de costos conjuntos de producir x empaques de plátano chips salados y y empaques de plátano chips naturales es:

c(x,y)=0.07x^2 +75x+85y+600

Donde c se expresa en perolitos.

Determine los costos marginales de c respecto a x y y cuando x=100 y y=50, finalmente interprete los resultados.

Para esto, calculamos la derivada parcial de la función c respecto a x.

\dfrac{\partial c}{\partial x} = 0.14x+75

y evaluando esta función en el punto (100,50) obtenemos:

\left. \dfrac{\partial c}{\partial x} \right|_{(100,50)} = 0.14(100)+75 = 89

Por lo tanto, al aumentar la producción de plátano chips saladas de 100 a 101 mientras se mantiene fija la producción de chips naturales en 50, los costos conjuntos aumentan aproximadamente en 89 Ps.

Por otra parte, calculamos la derivada parcial de la función c respecto a y.

\dfrac{\partial c}{\partial y} = 85

y evaluando esta función en el punto (100,50) obtenemos:

\left. \dfrac{\partial c}{\partial y} \right|_{(100,50)} = 85

Por lo tanto, al aumentar la producción de plátano chips naturales de 50 a 51 mientras se mantiene fija la producción de chips saladas en 100, los costos conjuntos aumentan aproximadamente en 85 Ps.

¿Requieres más ejemplos? ¿Tiendes dudas? No dudes en escribir.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios .