Elasticidad de Demanda

Al estudiar la demanda de un artículo respecto a su precio, es posible cuantificar la relación entre estos dos elementos definiendo la ecuación de demanda, tomando en cuenta que a menor precio mayor será la demanda y viceversa, sin embargo, es importante estudiar qué tan sensible es la demanda respecto a un cambio en el precio.

También pudiera interesarte

Partiendo de los cambios porcentuales en el precio y la demanda, podemos estudiar la sensibilidad de la demanda respecto un cambio en el precio tal como lo veremos en los siguientes ejemplos:

Ejemplos

Ejemplo 1

Suponga que la demanda de Coca-Cola ha decrecido en un 5\% después de que el precio de esta aumentó en un 3\%. En términos absolutos, notamos que el cambio en la demanda es mayor que el cambio en el precio, en este caso decimos que la demanda es elástica, pues un cambio en el precio ha tenido una alta incidencia en la demanda.

Ejemplo 2

Suponga que la demanda de Zanahoria ha decrecido en un 10\% después de que el precio de esta aumentó en un 10\%. En términos absolutos, notamos el cambio en la demanda igual que el cambio en el precio, en este caso decimos que la demanda tiene elasticidad unitaria, pues el cambio en el precio y en la demanda tienen la misma magnitud.

Ejemplo 3

Suponga que la demanda de Gas Doméstico, usado para cocinar, ha decrecido en un 2\% después de que el precio de esta aumentó en un 7\%. En términos absolutos, notamos que el cambio en la demanda es menor que el cambio en el precio, en este caso decimos que la demanda es inelástica, pues un cambio en el precio ha tenido una baja incidencia en la demanda.


Anuncios

Tomando en cuenta estos ejemplos, definimos un indicador que llamaremos Elasticidad de Demanda, que se calcula dividiendo el cambio porcentual en la demanda entre el cambio porcentual en el precio y podemos categorizar el valor de dicho indicador de la siguiente forma:

  • Si el cambio porcentual en la demanda es mayor que el cambio porcentual en el precio, entonces

\left| \frac{\text{Cambio porcentual en la demanda}}{\text{Cambio porcentual en el precio}} \right| > 1 \Longrightarrow La demanda es elástica

Elasticidad de Demanda, Demanda Elástica | totumat.com
  • Si el cambio porcentual en la demanda es igual que el cambio porcentual en el precio, entonces, el siguiente cociente

\left| \frac{\text{Cambio porcentual en la demanda}}{\text{Cambio porcentual en el precio}} \right| = 1 \Longrightarrow La demanda tiene elasticidad unitaria

Elasticidad de Demanda, Elasticidad Unitaria | totumat.com
  • Si el cambio porcentual en la demanda es menor que el cambio porcentual en el precio, entonces, el siguiente cociente

\left| \frac{\text{Cambio porcentual en la demanda}}{\text{Cambio porcentual en el precio}} \right| < 1 \Longrightarrow La demanda es inelástica

Elasticidad de Demanda, Demanda Inelástica | totumat.com

La elasticidad de demanda también se puede calcular en el estudio de las ecuaciones de demanda, particularmente, cuando definimos funciones de demanda. Supongamos que definimos el precio p de un determinado artículo en función de las cantidades demandadas q para determinar una función de demanda, es decir,

p=f(q)

De esta forma, los consumidores demandarán q unidades de dicho artículo si el precio es fijado en f(q), por otra parte, los consumidores demandarán q+h unidades de dicho artículo si el precio es fijado en f(q+h). Considerando estos valores, podemos calcular en cuanto se han incrementado la cantidad demandada y el precio.

Anuncios

La diferencia (q+h) - q = h determina el incremento que hubo en la cantidad demandada y más aún, el cambio porcentual en la cantidad demandada es calculado de la siguiente forma:

\frac{h}{q} \cdot 100

La diferencia f(q+h) - f(q) determina el incremento que hubo en el precio y más aún, el cambio porcentual en el precio es calculado de la siguiente forma:

\frac{f(q+h) - f(q)}{f(q)} \cdot 100

Considerando estos cambios porcentuales, calculamos el cociente entre estos dos cambios para determinar la elasticidad de demanda de las siguiente forma:

\dfrac{\frac{h}{q} \cdot 100}{\frac{f(q+h) - f(q)}{f(q)} \cdot 100} = \dfrac{\frac{h}{q}}{\frac{f(q+h) - f(q)}{f(q)}}

Considerando esta última división de fracciones, podemos notar que esta es equivalente a la siguiente división de fracciones

\dfrac{\frac{f(q)}{q}}{\frac{f(q+h) - f(q)}{h}}

Esta última expresión resulta de vital importancia para estudiar la elasticidad de demanda al considerar el menor incremento posible, es decir, cuando h \to 0 entonces podemos definir la siguiente expresión

\lim_{h \to 0} \dfrac{\frac{f(q)}{q}}{\frac{f(q+h) - f(q)}{h}}

De existir este límite, debemos notar que la fracción que se encuentra en el denominador es justamente la derivada de la función f(q) respecto a la variable q. Entonces, considerando que la función f(q) determina el precio p, definimos la Elasticidad Puntual de la Demanda de la siguiente forma:

\eta(q) = \dfrac{ \ \ \dfrac{p}{q} \ \ }{\dfrac{dp}{dq}}

Sin embargo, debemos tomar en cuenta que si se está estudiando como la variación del precio afecta a la demanda, conviene expresar la demanda en función del precio y en consecuencia. Entonces, partiendo del hecho de que la derivada de p respecto a q se puede expresar en función de la derivada de la función inversa de p, es decir,

\dfrac{dp}{dq} = \dfrac{1}{\dfrac{dq}{dp}}

Podemos concluir que si la función de demanda está expresada como q en función de p, entonces definimos la Elasticidad Puntual de la Demanda de la siguiente forma:

\eta(p) = \dfrac{ \ \ \dfrac{p}{q} \ \ }{\dfrac{1}{\frac{dp}{dq}}} = \dfrac{p}{q} \cdot \dfrac{dq}{dp}

Una vez que hemos calculado la elasticidad puntual de demanda usando esta definición, podemos categorizar este valor para indicar cual es el impacto que tiene el precio sobre la demanda de la siguiente manera:

  • Si \left| \eta \right| > 1, entonces la demanda es elástica.
  • Si \left| \eta \right| = 1, entonces la demanda tiene elasticidad unitaria.
  • Si \left| \eta \right| < 1, entonces la demanda es inelástica.

Veamos en los siguientes ejemplos como calcular la elasticidad puntual a partir de una función de demanda.

Anuncios

Ejemplos

Ejemplo 4

Suponga que la demanda semanal de kilos de zanahoria en una pequeña tienda de verduras de la ciudad está definida por la siguiente función:

q = -\frac{9}{5} \cdot p + 43

¿Cuál es la elasticidad puntual de demanda si se fija el precio del kilo de zanahoria en 17.5?

Para usar la fórmula de la elasticidad puntual de demanda debemos calcular la derivada de la función de demanda, de esta forma, tenemos que

\dfrac{dq}{dp} = -\frac{9}{5}

Una vez calculada la derivada de la función de demanda, sustituimos la derivada y la función en nuestra fórmula:

\eta(p) = \frac{p}{q} \cdot \frac{dq}{dp} = \frac{p}{-\frac{9}{5} \cdot p + 43} \cdot \left( -\frac{9}{5} \right)

Teniendo planteada la fórmula de la elasticidad puntual de demanda para la función q(p), evaluamos en p=17.5,

\eta(17.5) = \frac{17.5}{-\frac{9}{5} \cdot 17.5 + 43} \cdot \left( -\frac{9}{5} \right) = -2.7391

De esta forma, al ser |-2.7391| > 1, concluimos que la demanda puntual es elástica cuando se fija el precio en p=17.5, es decir, este precio tiene alta incidencia en la demanda del kilo de zanahoria.


Curva de Lorenz y Áreas

La Curva de Lorenz y el Coeficiente de Gini

  1. La Curva de Lorenz
    1. Ejemplos
      1. Ejemplo 1
      2. Ejemplo 2
  2. El Coeficiente de Gini
    1. Ejemplos
      1. Ejemplo 3

Una vez que se determina el Producto Interno Bruto de un país, ¿qué cantidad de este dinero le corresponde a cada ciudadano? Independientemente de cómo esté distribuida la riqueza entre los habitantes de un país, por distintas razones (justas o no), esta distribución no es equitativa, de ahí radica la importancia de presentar un modelo matemático que permita describir esta distribución.

También pudiera interesarte

La Curva de Lorenz

La Curva de Lorenz es una función que permite describir la distribución de la riqueza de en un país y también es conocida como la Línea de Desigualdad Perfecta. Usualmente esta se denota como L(x). En términos porcentuales, establece una correspondencia entre el porcentaje acumulado de ingresos y el porcentaje acumulado de la población receptora de ingresos, de esta forma, podemos decir que esta cumple con las siguientes condiciones:

  • Esta función corresponde a valores desde el 0% de la población acumulada hasta el 100% de la población acumulada, es decir, Dom(L) = [0,1].
  • Esta función corresponde a valores desde el 0% de ingresos acumulados hasta el 100% de los ingresos acumulados, es decir, Rgo(L) = [0,1].
  • El 0% de los ingresos es repartido entre el 0% de la población, es decir, L(0)=0.
  • El 100% de los ingresos es repartido entre el 110% de la población, es decir, L(1)=1.
  • La distribución de los ingresos nunca es equitativa, es decir, L(x) < x para todo x en su dominio.

Este último punto se debe a que la distribución equitativa de los ingresos se representa con la función identidad, es decir, con la función f(x)=x; y es conocida como la Línea de Igualdad Perfecta. La Curva de Lorenz se representa gráficamente con una función estrictamente creciente por debajo de la recta identidad de la siguiente forma:

La Curva de Lorenz o Línea de Desigualdad Perfecta | totumat.com

Veamos en los siguientes ejemplos algunas Curva de Lorenz y la distribución de los ingresos que estas describen.

Ejemplos

Ejemplo 1

Considere la función L(x) = \frac{1}{3}x^2 + \frac{2}{3}x, esta es una Curva de Lorenz y sobre ella podemos considerar lo siguiente:

  • Si evaluamos esta función en 0.2, tenemos que L(0.2) = \frac{1}{3}(0.2)^2 + \frac{2}{3}(0.2) = 0.1466 esto implica que el 20% de la población percibe el 14.66% de los ingresos.
  • Si evaluamos esta función en 0.4, tenemos que L(0.4) = \frac{1}{3}(0.4)^2 + \frac{2}{3}(0.4) = 0.32 esto implica que el 40% de la población percibe el 32% de los ingresos.
  • Si evaluamos esta función en 0.75, tenemos que L(0.75) = \frac{1}{3}(0.75)^2 + \frac{2}{3}(0.75) = 0.6875 esto implica que el 75% de la población percibe el 68.75% de los ingresos.

La función L(x) se representa gráficamente de la siguiente forma:

La Curva de Lorenz o Línea de Desigualdad Perfecta | totumat.com

Ejemplo 2

Considere la función L(x) = \frac{7}{18}x^6 + \frac{11}{18}x^2, esta es una Curva de Lorenz y sobre ella podemos considerar lo siguiente:

  • Si evaluamos esta función en 0.15, tenemos que f(0.15) = \frac{7}{18}(0.15)^6 + \frac{11}{18}(0.15)^2 = 0.013 esto implica que el 15% de la población percibe el 1.3% de los ingresos.
  • Si evaluamos esta función en 0.5, tenemos que f(0.5) = \frac{7}{18}(0.5)^6 + \frac{11}{18}(0.5)^2 = 0.1588 esto implica que el 50% de la población percibe el 15.88% de los ingresos.
  • Si evaluamos esta función en 0.8, tenemos que f(0.8) = \frac{1}{3}(0.8)^2 + \frac{2}{3}(0.8) = 0.4930 esto implica que el 80% de la población percibe el 49.30% de los ingresos.

La función L(x) se representa gráficamente de la siguiente forma:

La Curva de Lorenz o Línea de Desigualdad Perfecta | totumat.com



El Coeficiente de Gini

Es notable que en algunos casos la Curva de Lorenz está más cercana a la recta identidad pero en otros, está más lejana, lo que pudiera indicar que tan desigual es la distribución de los ingresos. Observando esta situación, vale la pena preguntarse: ¿habrá una forma cuantificar esta diferencia? La respuesta es sí.

El Coeficiente de Gini mide la separación de la Curva de Lorenz respecto a la Línea de Igualdad Perfecta para determinar el grado de desigualdad que existe en la distribución de los ingreso, para llevar a cabo esta medición, consideramos las áreas A (roja) y B (azul) expresadas en el siguiente gráfico:

La Curva de Lorenz, áreas y Coeficiente de Gini | totumat.com
  • El área A es el área entre la Línea de Igualdad Perfecta y la Curva de Lorenz.
  • El área B es el área bajo la Curva de Lorenz.

El Coeficiente de Gini se determina calculando el cociente entre la área A y la suma de las áreas A+B, es decir,

\frac{A}{A+B}

Pero podemos notar inmediatamente que la suma de las áreas A+B es justamente el área de un triángulo de base igual a 1 y de altura igual a 1, por lo tanto, el área de este triángulo es \frac{1}{2}. De esta forma, si efectuamos siguiente división

\dfrac{ \ A \ }{\frac{1}{2}}

Obtenemos una nueva expresión para calcular el Coeficiente de Gini, que será multiplicar el área A por 2:

2 \cdot A

Esta fórmula para calcular el Coeficiente de Gini nos indica que tan amplia es el área A y en consecuencia, qué tan alejada está la distribución de los ingresos de una distribución equitativa perfecta. Es por esto que al calcular este coeficiente, debemos tomar en cuenta que:

  • Si el Coeficiente de Gini está cercano a cero, esto quiere decir que la Curva de Lorenz está cerca de la Línea de Igualdad Perfecta y en consecuencia, la distribución de los ingresos tiende a ser equitativa.
  • Si el Coeficiente de Gini está cercano a uno, esto quiere decir que la Curva de Lorenz está alejada de la Línea de Igualdad Perfecta y en consecuencia, la distribución de los ingresos tiende a ser desigual.

En los siguientes ejemplos, veremos usaremos la fórmula para calcular el Coeficiente de Gini y veremos su interpretación.

Ejemplos

Ejemplo 3

Considerando la Curva de Lorenz L(x) = \frac{1}{3}x^2 + \frac{2}{3}x, calcule el Coeficiente de Gini e interprete su resultado.

Representamos gráficamente la función L(x) e identificamos las áreas involucradas para el cálculo del Coeficiente de Gini.

La Curva de Lorenz, áreas y Coeficiente de Gini | totumat.com

Calculamos el área A, identificada con rojo:

A \ = \ \int_{0}^{1} \left( x - L(x) \right) \ dx

\ = \ \int_{0}^{1} \left( x - \left( \frac{1}{3}x^2 + \frac{2}{3}x \right) \right) \ dx

\ = \ \left. \left( \frac{x^2}{2} - \frac{1}{3} \frac{x^3}{3} - \frac{2}{3} \frac{x^2}{2} \right) \right|_{0}^{1}

\ = \ \left( \frac{(1)^2}{2} - \frac{1}{3} \frac{(1)^3}{3} - \frac{2}{3} \frac{(1)^2}{2} \right) - \left( \frac{(0)^2}{2} - \frac{1}{3} \frac{(0)^3}{3} - \frac{2}{3} \frac{(0)^2}{2} \right)

\ = \ 0.0555

Por lo tanto, el Coeficiente de Gini es:

2 \cdot A = 2 \cdot 0.0555 = 0.1111

Al estar este valor cercano a cero, concluimos que la distribución de los ingresos tiende a ser equitativa.

  • Considerando la Curva de Lorenz L(x) = \frac{7}{18}x^6 + \frac{11}{18}x^3, calcule el Coeficiente de Gini e interprete su resultado.

Representamos gráficamente la función L(x) e identificamos las áreas involucradas para el cálculo del Coeficiente de Gini.

La Curva de Lorenz, áreas y Coeficiente de Gini | totumat.com

Calculamos el área A, identificada con rojo:

A \ = \ \int_{0}^{1} \left( x - L(x) \right) \ dx

\ = \ \int_{0}^{1} \left( x - \left( \frac{7}{18}x^6 + \frac{11}{18}x^3 \right) \right) \ dx

\ = \ \left. \left( \frac{x^2}{2} - \frac{7}{18} \frac{x^7}{7} - \frac{11}{18} \frac{x^4}{4} \right) \right|_{0}^{1}

\ = \ \left( \frac{(1)^2}{2} - \frac{7}{18} \frac{(1)^7}{7} - \frac{11}{18} \frac{(1)^4}{4} \right) - \left( \frac{(0)^2}{2} - \frac{7}{18} \frac{(0)^7}{7} - \frac{11}{18} \frac{(0)^4}{4} \right)

\ = \ 0.2916

Por lo tanto, el Coeficiente de Gini es:

2 \cdot A = 2 \cdot 0.2916 = 0.5833

Al estar este valor está más cercano a uno, que a cero, concluimos que la distribución de los ingresos tiende a ser desigual.


Excedente de los Consumidores y de los Productores – Caso no lineal

  1. Excedente de los Consumidores
  2. Excedente de los Productores
    1. Ejemplos
      1. Ejemplo 1
      2. Ejemplo 2

Al estudiar el mercado, es notorio que los productores siempre querrán vender a un precio elevado y los consumidores siempre querrán comprar a un precio bajo. El punto de equilibrio del mercado permite establecer un consenso entre las dos partes, sin embargo, ¿qué tanto beneficia este consenso a las partes?

También pudiera interesarte

Excedente de los Consumidores

Suponga que usted va al supermercado con el objetivo de comprar un producto y que cuando lo va a pagar, recibe la grata sorpresa de que está más barato de lo que usted pensaba, esta situación tiene una interpretación formal. Si observamos la función de demanda de un determinado artículo, podemos notar que si se fija el precio de cada unidad en p_1 Perolitos (Ps.), los consumidores estarán dispuestos a comprar q_1 unidades de dicho artículo.

Excedente de los Consumidores | totumat.com

Sin embargo, una vez que se ha fijado el punto de equilibrio (q_0,p_0), podemos notar que aquellos consumidores que están dispuestos a comprar q_1 unidades cuando el precio se había fijado en p_1 Ps., ahora comprarán las mismas q_1 unidades pagando cada unidad en un menor precio de p_0 Ps.

Excedente de los Consumidores | totumat.com

De esta forma, si un consumidor pensaba gastar p_1 \cdot q_1 Ps. (precio por unidad multiplicado por la cantidad adquirida), una vez que se ha fijado el precio de equilibrio, gastará p_0 \cdot q_1 Ps. Esto genera un beneficio para los consumidores, y a partir de este hecho surge la siguiente pregunta: ¿es posible cuantificar este beneficio?

Para responder a esta pregunta, supongamos que la cantidad de unidades que los consumidores piensan comprar no es fija sino que es una gama representada por un rango de unidades comprendidas entre ninguna unidad y la cantidad q_0, fijada por el punto de equilibrio. El gasto que pagarían originalmente, está representado por el área que está debajo de la función de demanda de la siguiente forma,

Excedente de los Consumidores | totumat.com

Pero como al final los consumidores están pagando un precio de p_0 Ps. por cada unidad, el beneficio generado al fijar el equilibrio, está representado por el área que está debajo de la función de demanda y por encima del precio de equilibrio de la siguiente forma,

Excedente de los Consumidores | totumat.com

El área que representa el beneficio para los consumidores una vez que se ha fijado el precio de equilibrio se llama Excedente de los Consumidores o Superávit de los Consumidores, y lo podemos medir calculando el área que se encuentra entre la función de demanda, la recta que define del precio de equilibrio y el Eje P.

Excedente de los Consumidores | totumat.com

Por lo tanto, si la función de demanda está denotada de la forma D(q), determinamos el excedente de los consumidores calculando la siguiente integral definida:

\displaystyle E.C. \ = \ \int_{0}^{q_0} \left( D(q) - p_0 \right) \ dq


Nota: Perolitos (Ps.) es la moneda oficial de totumat.




Excedente de los Productores

Suponga que usted es productor de un artículo pero luego de estudiar los costos y un posible precio de venta para recibir unos ingresos aceptables, recibe la grata sorpresa de que puede fijar un precio por encima de lo que usted pensaba, esta situación tiene una interpretación formal. Si observamos la función de oferta de un determinado artículo, podemos notar que los productores estarán dispuestos a ofertar q_1 unidades de dicho artículo si se fija el precio de cada unidad en p_1 Perolitos (Ps.),

Excedente de los Productores | totumat.com

Sin embargo, una vez que se ha fijado el punto de equilibrio (q_0,p_0), podemos notar que aquellos productores que están dispuestos a ofertar q_1 unidades cuando el precio se había fijado en p_1 Ps., ahora ofertarán las mismas q_1 unidades vendiendo cada unidad en un mayor precio de p_0 Ps.

Excedente de los Productores | totumat.com

De esta forma, si un productor pensaba recibir p_1 \cdot q_1 Ps. (precio por unidad multiplicado por la cantidad ofertada), una vez que se ha fijado el precio de equilibrio, recibir p_0 \cdot q_1 Ps. Esto genera un beneficio para los productores, y a partir de este hecho surge la siguiente pregunta: ¿es posible cuantificar este beneficio?

Para responder a esta pregunta, supongamos que la cantidad de unidades que los productores piensan ofertar no es fija sino que es una gama representada por un rango de unidades comprendidas entre ninguna unidad y la cantidad q_0, fijada por el punto de equilibrio. Los ingresos que recibirían originalmente, están representado por el área que está debajo de la función de oferta de la siguiente forma,

Excedente de los Productores | totumat.com

Pero como al final los productores están vendiendo a un precio de p_0 Ps. por cada unidad, el beneficio generado al fijar el equilibrio, está representado por el área que está debajo del precio de equilibrio y por encima de la función de oferta de la siguiente forma,

Excedente de los Productores | totumat.com

El área que representa el beneficio para los productores una vez que se ha fijado el precio de equilibrio se llama Excedente de los Productores o Superávit de los Productores, y lo podemos medir calculando el área del triángulo que genera la función de oferta, la función del precio de equilibrio y el Eje P.

Excedente de los Productores | totumat.com

Por lo tanto, si la función de oferta está denotada de la forma O(q), determinamos el excedente de los productores calculando la siguiente integral definida:

\displaystyle E.P. \ = \ \int_{0}^{q_0} \big( p_0 - O(q) \big) \ dq

Consideremos en los siguientes ejemplos cómo calcular el excedente de los consumidores y el excedente de los fabricantes considerando la curva de demanda y la curva de oferta del mercado.



Ejemplos

Ejemplo 1

Considerando la ecuación de demanda p = -\frac{67}{100}q +126 y la ecuación de oferta p = \frac{13}{25}q^2 +36, calcule el punto de equilibrio del mercado; posteriormente calcule el excedente de los consumidores y el excedente de los fabricantes.

Para calcular el punto de equilibrio del mercado debemos igualar las expresiones que definen ambas rectas y luego planteamos una ecuación cuadrática para calcular q.

\displaystyle -\frac{67}{100}q +126 = \frac{13}{25}q^2+36

\displaystyle \Rightarrow \ -\frac{67}{100}q +126 - \frac{13}{25}q^2 - 36 = 0

\displaystyle \Rightarrow \ - \frac{13}{25}q^2 -\frac{67}{100}q + 90 = 0

\displaystyle \Rightarrow \ \frac{13}{25}q^2 + \frac{67}{100}q - 90 = 0

Para calcular la solución de esta ecuación cuadrática utilizamos el método de discriminante:

\displaystyle q \ = \ \dfrac{-b \pm \sqrt{b^2-4 \cdot a \cdot c}}{2 \cdot a}

\displaystyle \ = \ \dfrac{- \frac{67}{100} \pm \sqrt{\left( \frac{67}{100} \right)^2-4 \cdot \left( \frac{13}{25} \right) \cdot \left( - 90 \right)}}{2 \cdot \left( \frac{13}{25} \right)}

De donde concluimos que q \approx -13.84163 ó q \approx 12.50163, pero al ser q una variable que representa cantidades, consideramos únicamente su valor positivo.

Una vez calculado el valor de q, lo sustituimos en la función de nuestra preferencia y calculamos el valor de p. Sustituyamos en este caso el valor de q \approx 12.50163 en la ecuación de demanda.

\displaystyle p = \ -\frac{67}{100} \cdot \left( 12.50 \right) + 126 \ \approx \ 117.6239

Por lo tanto, el punto de equilibrio del mercado \left( 12.50163 ; 117.6239 \right). Grafiquemos ahora el punto de equilibrio del mercado e identifiquemos las áreas que definen los excedentes.

Excedente de los Productores y de los Consumidores, ejemplo. | totumat.com

Calculamos el Excedente de los Consumidores:

\displaystyle E.C. \ = \ \int_{0}^{q_0} \left( D(q) - p_0 \right) \ dq

\displaystyle \ = \ \int_{0}^{12.50} \left( -\frac{67}{100}q +126 - 117.62 \right) \ dq

\displaystyle \ = \ \int_{0}^{12.50} \left( -\frac{67}{100}q + 8.38 \right) \ dq

\displaystyle \ = \ \left. \left( -\frac{67}{100} \frac{q^2}{2} + 8.38q \right) \right|_{0}^{12.05}

\displaystyle \ = \ \left( -\frac{67}{100} \frac{(12.05)^2}{2} + 8.38(12.05) \right) - \left( -\frac{67}{100} \frac{(0)^2}{2} + 8.38(0) \right)

\displaystyle \ = \ 52.41

Calculamos el Excedente de los Productores:

\displaystyle E.P. \ = \ \int_{0}^{q_0} \left( p_0 - O(q) \right) \ dq

\displaystyle \ = \ \int_{0}^{12.05} \left( 117.62 - \frac{13}{25}q^2 - 36 \right) \ dq

\displaystyle \ = \ \int_{0}^{12.05} \left( 81.62 - \frac{13}{25}q^2 \right) \ dq

\displaystyle \ = \ \left. \left( 81.62q - \frac{13}{25} \frac{q^3}{3} \right) \right|_{0}^{12.05}

\displaystyle \ = \ \left( 81.62 (12.05) - \frac{13}{25} \frac{(12.05)^3}{3} \right) - \left( 81.62(0) - \frac{13}{25} \frac{(0)^3}{3} \right)

\ = \ 680.24

Ejemplo 2

Considerando la ecuación de demanda p = -\frac{1}{10}q^2 +115 y la ecuación de oferta p = \frac{87}{100}q +11, calcule el punto de equilibrio del mercado; posteriormente calcule el excedente de los consumidores y el excedente de los fabricantes.

Para calcular el punto de equilibrio del mercado debemos igualar las expresiones que definen ambas rectas y luego planteamos una ecuación cuadrática para calcular q.

\displaystyle -\frac{1}{10}q^2 +115 = \frac{87}{100}q +11

\displaystyle \Rightarrow \ -\frac{1}{10}q^2 +115 - \frac{87}{100}q - 11 = 0

\displaystyle \Rightarrow \ -\frac{1}{10}q^2 - \frac{87}{100}q + 104 = 0

\displaystyle \Rightarrow \ \frac{1}{10}q^2 + \frac{87}{100}q - 104 = 0

Para calcular la solución de esta ecuación cuadrática utilizamos el método de discriminante:

\displaystyle q \ = \ \dfrac{-b \pm \sqrt{b^2-4 \cdot a \cdot c}}{2 \cdot a}

\displaystyle \ = \ \dfrac{- \frac{87}{100} \pm \sqrt{\left( \frac{87}{100} \right)^2-4 \cdot \left( \frac{1}{10} \right) \cdot \left( - 104 \right)}}{2 \cdot \left( \frac{1}{10} \right)}

De donde concluimos que q \approx -33.41109 ó q \approx 31.67109, pero al ser q una variable que representa cantidades, consideramos únicamente su valor positivo.

Una vez calculado el valor de q, lo sustituimos en la función de nuestra preferencia y calculamos el valor de p. Sustituyamos en este caso el valor de q \approx 31.67 en la ecuación de oferta.

p = \ \frac{87}{100} (31.67) +11 \ \approx \ 38.55385

Por lo tanto, el punto de equilibrio del mercado \left( 31.67 ; 38.55 \right). Grafiquemos ahora el punto de equilibrio del mercado e identifiquemos las áreas que definen los excedentes.

Excedente de los Productores y de los Consumidores, ejemplo. | totumat.com

Calculamos el Excedente de los Consumidores:

\displaystyle E.C. \ = \ \int_{0}^{q_0} \left( D(q) - p_0 \right) \ dq

\displaystyle \ = \ \int_{0}^{31.67} \left( -\frac{1}{10}q^2 +115 - 38.55 \right) \ dq

\displaystyle \ = \ \int_{0}^{31.67} \left( -\frac{1}{10}q^2 + 76.45 \right) \ dq

\displaystyle \ = \ \left. \left( -\frac{1}{10} \frac{q^3}{3} + 76.45q \right) \right|_{0}^{31.67}

\displaystyle \ = \ \left( -\frac{1}{10} \frac{(31.67)^3}{3} + 76.45(31.67) \right) - \left( -\frac{1}{10} \frac{(0)^3}{3} +76.45(0) \right)

\ = \ 1362.35

Calculamos el Excedente de los Productores:

\displaystyle E.P. \ = \ \int_{0}^{q_0} \left( p_0 - O(q) \right) \ dq

\displaystyle \ = \ \int_{0}^{31.67} \left( 38.55 - \frac{87}{100}q - 11 \right) \ dq

\displaystyle \ = \ \int_{0}^{31.67} \left( 27.55 - \frac{87}{100}q \right) \ dq

\displaystyle \ = \ \left. \left( 27.55 q - \frac{87}{100} \frac{q^2}{2} \right) \right|_{0}^{31.67}

\displaystyle \ = \ \left( 27.55 (31.67) - \frac{87}{100} \frac{(31.67)^2}{2} \right) - \left( 27.55 (0) - \frac{87}{100} \frac{(0)^2}{2} \right)

\ = \ 436.20


Curva de Precio a través del tiempo

Ecuaciones Diferenciales – Dinámica del precio de un producto

Considerando las ecuaciones diferenciales ordinarias lineales, particularmente, el caso no-homogéneo con coeficiente constante de la forma

x' + ax = w(t)

Sabemos calcular la solución de este tipo de ecuaciones. Veremos que este tipo de ecuaciones se puede usar para describir la relación entre la oferta y la demanda en una economía.

Considerando que el equilibrio del mercado se consigue cuando las oferta es igual a la demanda, nos propondremos determinar la trayectoria que debe seguir el precio a través del tiempo para que el mercado se mantenga siempre en equilibrio.

También pudiera interesarte

Suponga que las funciones de demanda y oferta de un producto son las siguientes:

Q_d = a_1 - b_1 P \text{ y } Q_o = - a_2 + b_2 P \text{ donde } a_i,b_i>0

Sabiendo que el equilibrio de mercado se consigue cuando Q_d = Q_o, entonces

a_1 - b_1 P = -a_2 + b_2 P

\Rightarrow -b_1 P -b_2 P = -a_1-a_2

\Rightarrow P(- b_1 - b_2) = -a_1-a_2

\Rightarrow P = \frac{a_1+a_2}{b_1+b_2}

Es decir, si P_e = \frac{a_1+a_2}{b_1+b_2}, entonces el mercado estará en equilibrio. Sin embargo, cuando el precio P se desvía de este valor P_e, la demanda excede la oferta o la oferta excede la demanda.

Consideraremos que el precio en un mercado cambia de acuerdo a las fuerzas relativas de demanda y para simplicidad, supongamos que la tasa de cambio de precios con respecto al tiempo t es proporcional al exceso en la demanda, formalmente tenemos que si Q_d-Q_o es el exceso en la demanda, entonces

P'(t) = m \cdot \big( Q_d(t) - Q_o(t) \big), m>0

Sustituyendo las funciones Q_d y Q_o en esta última ecuación, tenemos

P'(t) = m \cdot \big( Q_d(t) - Q_o(t) \big)

\Rightarrow P'(t) = m \cdot \big( a_1 - b_1 P - ( - a_2 + b_2 P) \big)

\Rightarrow P'(t) = m \cdot ( a_1 - b_1 P + a_2 - b_2 P )

\Rightarrow P'(t) = m a_1 - m b_1 P + m a_2 - m b_2 P

\Rightarrow P'(t) = -m P( b_1 + b_2) + m (a_1 + a_2)

\Rightarrow P'(t) + m ( b_1 + b_2) \cdot P = m (a_1 + a_2)

Esta es una ecuación diferencial ordinaria lineal de primer orden que se puede calcular usando el factor integrante \mu(t) = \textit{\Large e}^{\int m(b_1+b_2)dt} = \textit{\Large e}^{m(b_1+b_2)t}, así, tenemos que

\displaystyle \frac{dP}{dt} + m ( b_1 + b_2) \cdot P = m (a_1 + a_2 )

\displaystyle \Rightarrow \textbf{\textit{\Large e}}^{m(b_1+b_2)t} \frac{dP}{dt} + \textbf{\textit{\Large e}}^{m(b_1+b_2)t} m ( b_1 + b_2) = \textbf{\textit{\Large e}}^{m(b_1+b_2)t} m (a_1 + a_2 )

\displaystyle \Rightarrow \frac{\textbf{\textit{\Large e}}^{m(b_1+b_2)t} P)}{dt} = \textbf{\textit{\Large e}}^{m(b_1+b_2)t} m (a_1 + a_2 )

\displaystyle \Rightarrow \int \frac{d(\textbf{\textit{\Large e}}^{m(b_1+b_2)t} P)}{dt} dt = \int \textbf{\textit{\Large e}}^{m(b_1+b_2)t} m (a_1 + a_2 ) dt

\displaystyle \Rightarrow \textbf{\textit{\Large e}}^{m(b_1+b_2)t} P = \frac{m(a_1+a_2)}{m(b_1+b_2)}\textbf{\textit{\Large e}}^{m(b_1+b_2)t} + C

\displaystyle \Rightarrow \textbf{\textit{\Large e}}^{m(b_1+b_2)t} P = P_e \textbf{\textit{\Large e}}^{m(b_1+b_2)t} + C

\displaystyle \Rightarrow P = P_e + C \textbf{\textit{\Large e}}^{-m(b_1+b_2)t}

Si consideremos la condición inicial P(0), entonces tenemos que

P(0) = P_e + C \textit{\Large e}^{-m(b_1+b_2) \cdot 0} = P_e + C \Rightarrow C = P(0) - P_e

Por lo tanto, la solución que estamos buscando viene dada por

P(t) = ( P(0) - P_e) \textit{\Large e}^{-m_0 t} + P_e, \text{ donde } m_0 = m(b_1+b_2)

Notemos ahora que m_0>0, así que si t \rightarrow \infty, entonces P(t) \rightarrow P_e. Es decir, en el largo plazo, el mecanismo del mercado llevará la dinámica del mercado a su punto de equilibrio.


Referencias

Zhang, W.-B. (2005). DIFFERENTIAL EQUATIONS, BIFURCATIONS, AND CHAOS IN ECONOMICS (Vol. 68). World Scientific.

Modelo de Harrod-Domar

Ecuaciones Diferenciales – Modelo de Harrod-Domar

Considerando las ecuaciones diferenciales ordinarias lineales de primer orden, particularmente, el caso homogéneo con coeficiente constante de la forma

x' + ax = 0

Sabemos calcular la solución de este tipo de ecuaciones, así que veremos que este tipo de ecuaciones se puede usar para describir la relación de la inversión anual con la capacidad productiva en una economía, a través del Modelo de Harrod-Domar.

El caso ideal es cuando toda la inversión es aprovechada para obtener la mayor producción posible, esto se conoce como equilibro, así que nos propondremos a determinar cuál es la trayectoria de la inversión a lo largo del tiempo para la cual el sistema siempre se encuentra en equilibrio.

También pudiera interesarte

El sistema en el que se basa este modelo está construido sobre la siguiente hipótesis: Si I(t) es una variable que mide la inversión por año y Y(t) es una variable que mide el flujo de ingresos por año; cualquier cambio en la tasa de ingreso por año afectará la demanda agregada y productividad de la economía.

Teniendo en cuenta que el efecto de la demanda en un cambio de I(t) opera a través de un proceso multiplicativo. Un incremento en I(t) incrementará la tasa del flujo de ingresos por año Y(t) de forma proporcional, es decir, como un múltiplo del incremento en I(t).

Los agentes involucrados tomarán una porción de la producción (esta cantidad es predecible) con el propósito de acumular capital, esta proporción es llamada propensión marginal al ahorro y la denotaremos con s. Para este caso supondremos que existe un sólo bien, de esta forma no habrá cambios en precios relativos ni en la composición del capital. De esta forma se simplifica el modelo y como I(t) es el único flujo de gastos que influye en la tasa del flujo de ingresos, tenemos que

\displaystyle Y'(t) = \frac{I'(t)}{s}

El efecto de la capacidad de inversión se refleja en el cambio de la tasas de producción potencial que la economía puede producir. La tasa de capacidad-capital está definida por

\displaystyle \rho = \frac{k(t)}{K(t)}

donde k(t) es la capacidad o flujo de producción potencial, K(t) es el capital y \rho representa una constante (predeterminada) de tasas de capacidad-capital.

Después de un sencillo despeje en ésta última igualdad, tenemos que

k(t) = \rho K(t)

y derivando respecto a t en ambos lados de la ecuación, obtenemos

k'(t) = \rho K'(t) = \rho I(t)

ya que un incremento en el capital es igual a la capacidad de inversión, es decir, K'(t) = I(t).

Por otra parte, definimos equilibrio como una situación en la que la capacidad productiva es totalmente aprovechada, es decir,

Y(t) = k(t)

entonces, al considerar un equilibrio, existe un balance entre los cambios respectivos en la capacidad productiva y demanda agregada, esto es,

Y'(t) = k'(t)

Teniendo en cuenta todas estas definiciones, nos preguntamos: ¿Qué trayectoria de tiempo de la inversión I(t) mantendrá la economía en equilibrio todo el tiempo? Para responder esta pregunta tomaremos las ecuaciones Y'(t) = \frac{I(t)}{s} y k'(t)=\rho I(t) para sustituirlas en la ecuación Y'(t)=k'(t), de esta forma obtenemos que

\displaystyle \frac{I'(t)}{s} = \rho \cdot  I(t) \Rightarrow I'(t) = s \cdot \rho \cdot I(t)

Calculamos la solución de esta ecuación diferencial con la condición inicial I(0):

\displaystyle \frac{dI}{dt} = s\rho I

\displaystyle \Rightarrow \frac{dI}{I} = s\rho \ dt

\displaystyle \Rightarrow \frac{dI}{I} = s\rho \ dt

\displaystyle \Rightarrow \int \frac{dI}{I} = \int s\rho \ dt

\displaystyle \Rightarrow \textit{\Large e}^{\ln(I)} = \textbf{\textit{\Large e}}^{s\rho t + C}

\displaystyle \Rightarrow I = C \cdot \textbf{\textit{\Large e}}^{s\rho t}

Al considerar el valor inicial I(0), tenemos que

\displaystyle I(0) = C \cdot \textbf{\textit{\Large e}}^{s\rho (0)} = \textbf{\textit{\Large e}}^{0} = C \textbf{\textit{\Large e}}^{0} = C \cdot 1 = C

Por lo tanto la trayectoria requerida viene dada por I(t) = I(0) \cdot \textit{\Large e}^{s \rho t}, donde I(0) es la tasa inicial de inversión.

Esto implica que para mantener el balance entre la capacidad productiva y la demanda sobre el tiempo, la tasa de flujo de inversión debe crecer a una tasa exponencial de \rho s.

Sustituyendo I(t) es K'(t)=I(t), tenemos que

\displaystyle K'(t)=I(0) \cdot \textbf{\textit{\Large e}}^{s \rho t}

\displaystyle \Longrightarrow \int K'(t) dt = I(0) \cdot \textbf{\textit{\Large e}}^{s \rho t} dt

\displaystyle \Longrightarrow K(t) = \frac{I(0)}{s \rho} \cdot \textbf{\textit{\Large e}}^{s \rho t} + C

Al considerar el valor inicial K(0), la solución será

\displaystyle K(t) = \frac{I(0)}{s \rho} \cdot \textbf{\textit{\Large e}}^{s \rho t} + K(0) - \frac{I(0)}{s \rho}

Finalmente, tenemos que Y(t) = k(t) \Rightarrow Y(t) = \rho K(t) y en consecuencia,

\displaystyle Y(t) = \frac{I(0)}{s} \cdot \textbf{\textit{\Large e}}^{s \rho t} +\rho K(0) - \frac{I(0)}{s}