Ejercicios Propuestos

Ejercicios Propuestos – Derivadas Parciales

Anuncios

Dadas las siguientes funciones definidas en varias variables.

Calcule las siguientes derivadas parciales:

\dfrac{\partial f}{\partial x}, \dfrac{\partial f}{\partial y}

Posteriormente, calcule las siguientes derivadas parciales de orden superior:

\dfrac{\partial^2 f}{\partial x^2}, \dfrac{\partial^2 f}{\partial x \partial y}, \dfrac{\partial^2 f}{\partial y \partial x}, \dfrac{\partial^2 f}{\partial y^2}.

  1. f(x,y)=x
  2. f(x,y)=-2y
  3. f(x,y)=13xy
  4. f(x,y)=5 x^2 y^2

  1. f(x,y)=x+y
  2. f(x,y)=2y-x
  3. f(x,y)=3xy+8\frac{x}{y}+3
  4. f(x,y)=5x^2 - 2y^2+xy

  1. f(x,y)=\frac{1}{x}
  2. f(x,y)=-\frac{3}{y}
  3. f(x,y)=\frac{7}{xy}
  4. f(x,y)=\frac{15}{x+y}

  1. f(x,y)=\frac{2y}{x}
  2. f(x,y)=\frac{x}{5y}
  3. f(x,y)=\frac{7x+y}{2xy}
  4. f(x,y)=\frac{x-4y}{x+y}

  1. f(x,y)=\frac{2x}{\sqrt{y}}
  2. f(x,y)=\frac{7\sqrt{x}}{y}
  3. f(x,y)=-\frac{x+5y}{xy}
  4. f(x,y)=\frac{x-y}{9x+y}

  1. f(x,y)=\sqrt{x}y
  2. f(x,y)=-x\sqrt{y}
  3. f(x,y)=4\sqrt{x}\sqrt{y}
  4. f(x,y)=\frac{\sqrt{x}}{\sqrt{y}} + x^2y^2+20
  1. f(x,y)=x^2+5x^4+y-2y^3+6
  2. f(x,y)=5x\sqrt{y}+2x^3-y^2
  3. f(x,y)=10\sqrt{x}\sqrt{y}
  4. f(x,y)=\frac{\sqrt{y}}{\sqrt{x}} + x^2+y^2-15

  1. f(x,y)=\ln(x)
  2. f(x,y)=\ln(5y)
  3. f(x,y)=-\ln(3xy)
  4. f(x,y)=\ln(3x+10y)

  1. f(x,y)=2\ln(x) \ln(y)
  2. f(x,y)=3\ln(y)-x^2
  3. f(x,y)=4\ln(xy)-y^3
  4. f(x,y)=5\ln(x+y)+8x^3+y^2

  1. f(x,y)={\rm e}^{x}
  2. f(x,y)=-{\rm e}^{y}
  3. f(x,y)=19{\rm e}^{xy}
  4. f(x,y)=-12{\rm e}^{x+y}

  1. f(x,y)={\rm e}^{2x^2+5x+y-2y^3+6}
  2. f(x,y)={\rm e}^{x\sqrt{y}+x^3+y^2}
  3. f(x,y)={\rm e}^{\frac{x-y}{x+y}}
  4. f(x,y)={\rm e}^{\ln(x+y)+x^3+y^2}


Anuncio publicitario

Un comentario en “Ejercicios Propuestos – Derivadas Parciales

¿Tienes alguna duda? Compártela en los comentarios.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.