Dadas las siguientes funciones definidas en varias variables.
Calcule las siguientes derivadas parciales:
,
Posteriormente, calcule las siguientes derivadas parciales de orden superior:
,
,
,
.
Dadas las siguientes funciones definidas en varias variables.
Calcule las siguientes derivadas parciales:
,
Posteriormente, calcule las siguientes derivadas parciales de orden superior:
,
,
,
.
En la economía, la utilidad estudia el nivel de satisfacción de un individuo respecto a la forma en que este clasifica distintas situaciones, sin embargo, este tipo de funciones no se pueden cuantificar de forma rigurosa pues la satisfacción es algo muy subjetivo ya que la utilidad de una persona no sólo depende de los bienes materiales que consume, sino también de sus actitudes psicológicas, de las presiones de su grupo social, de sus experiencias personales y del entorno cultural en general según Walter Nicholson en su libro de Teoría Microeconómica, Principios básicos y ampliaciones, es por esto que se restringe el estudio de este tipo de funciones a variables que se puedan medir como las cantidades relativas de alimento, horas de trabajo semanales o tasas fiscales, las variables que no podemos medir se suponen como constantes, esto se le llama en los libros de texto económicos ceteris paribus.
También pudiera interesarte
Consideremos el caso particular en que una vez presentados bienes distintos, un individuo debe escoger cantidades
de dichos bienes. Entonces, representaremos la forma en que este individuo clasifica estos bienes definiendo una función de utilidad de la siguiente forma:
Cuando sólo se toman en consideración dos bienes, entonces la función de utilidad se expresa sólo para la cantidad de estos dos bienes y
:
La curva de nivel representa todas las combinaciones de
y
que proveen al individuo un nivel de satisfacción igual a
. Esta curva de nivel se llama curva de indiferencia pues al ellas representar todas las combinaciones de las canastas del mercado que proveen al individuo el mismo nivel de satisfacción, este se mostrará indiferente entre una canasta y otra. De forma general, si la función
es una función de Cobb-Douglas, su gráfica estará representada de la siguiente forma:
La curva de indiferencia además de mostrar las combinaciones de los bienes y
, nos permiten observar que en que medida un individuo está dispuesto a intercambiar los bienes para obtener el mismo nivel de satisfacción. De forma que si tiene las cantidades
y
de un bien, la cantidad de unidades de
que intercambia para obtener una unidad de
está definida como la tasa marginal de sustitución (TMS) y está determinada por la pendiente negativa de la curva
en el punto
, es decir,
Calculada a partir de la función implícita .
Es posible determinar la tasa marginal de sustitución calculando derivadas parciales pues si tomamos en cuenta que el diferencial de la función de utilidad está dada por , entonces el diferencial de la curva de nivel
será
A partir de esta igualdad, podemos obtener la derivada haciendo un abuso de la notación para despejar los diferenciales de
y
de la siguiente forma
Reduzcamos una situación en la que un individuo de la sociedad sólo puede dedicar su tiempo a dos usos respecto al mercado: horas de trabajo y horas de no trabajo.
Denotaremos las horas de trabajo con la variable (labor en inglés) y si por cada hora de trabajo obtiene un ingreso de
, entonces, considerando que este individuo puede adquirir bienes si trabaja, definimos la variable consumo
.
Definiremos las horas de no trabajo como horas de ocio y las denotaremos con la variable , estas representan las horas que dedica a trabajar en casa (no en el mercado), ver televisión o navegar en las redes sociales.
Suponga que las preferencias de este individuo están determinadas a través de la siguiente función de utilidad:
Para determinar la TMS. Debemos calcular ambas funciones de utilidad marginal. Previamente, debemos notar que , por lo tanto
Luego,
Si una empresa decide fijar su producción en una cantidad , una vez que ha determinado que su función de producción está dada de la forma
, podemos representar mediante una curva de nivel todas las combinaciones posibles de trabajo y capital que mantendrán la producción fija en
. Esta curva de nivel será llamada Curva Isocuanta (igual cantidad) y de forma general, si la función
es una función de Cobb-Douglas, su gráfica estará definida de la siguiente forma:
También pudiera interesarte
La curva isocuanta además de mostrar las combinaciones de los bienes y
, nos permiten observar que en que medida se puede intercambiar capital por trabajo manteniendo el mismo nivel de producción. De forma que si se trabajan
horas semanales y se invierten
unidades de capital, la cantidad de unidades de
que se intercambian por unidades de trabajo
está definida como la tasa técnica de sustitución (TTS) y está determinada por la pendiente negativa de la curva
en el punto
, es decir,
Calculada a partir de la función implícita .
Es posible determinar la tasa marginal de sustitución calculando derivadas parciales pues si tomamos en cuenta que el diferencial de la función de producción está dada por , entonces el diferencial de la curva de nivel
será
A partir de esta igualdad, podemos obtener la derivada haciendo un abuso del lenguaje para despejar los diferenciales de
y
de la siguiente forma
Considerando una compañía que fabrica los plátano chips, ésta ha determinado que la función de producción es , donde
es el número de horas de trabajo por semana y
es el capital (expresado en miles de Perolitos por semana) requerido para la producción semanal de
gruesas de plátano chips (Una gruesa es una cantidad de artículos equivalente a doce docenas, es decir, 144 artículos.). Determine la Tasa Técnica de Sustitución.
Debemos calcular ambas funciones de producción marginal, previamente, debemos notar que , por lo tanto
Luego,
Hemos visto de forma muy superficial uno de los métodos para graficar funciones en varias variables, otro de los métodos para entender el comportamiento gráfico de este tipo de funciones es conocido como las curvas de nivel y se basa en el método que usan los cartógrafos para diseñar mapas de la superficie terrestre (y de otros cuerpos celestes). Este método consiste en dibujar los contornos que unen los puntos del mapa que representan las posiciones del terreno con la misma altitud sobre el nivel del mar, por ejemplo, el contorno de todos los puntos que se encuentran a 100 metros por encima del nivel del mar. Cuando estas curvas están muy juntas, esto indica que las pendientes están muy pronunciadas.
Veamos en la siguiente imagen tomada del mapa del relieve del Monte Everest que provee Google Maps, en las regiones donde las pendientes son menos empinadas es notorio que las curvas de nivel están bastante separadas en comparación con los alrededores de la cima del Monte Everest.
Recordemos que al definir las derivadas parciales, fijamos los valores de las variables y
para generar curvas en planos paralelos a los planos YZ y XZ respectivamente. De esta forma, podemos representar geométricamente en una función fijando valores para la variable
para generar curvas en planos paralelos al plano XY.
Formalmente, si fijamos la variable en un valor
, entonces la curva de nivel en
estará expresada de la forma
.
Particularmente podemos cortar la gráfica de la función con el plano generado en
e incluso podemos estudiar sus curvas de nivel en distintos valores de
, por ejemplo, los valores enteros
de la siguiente forma
Notando que a medida que crece el valor fijo de las circunferencias están mas juntas, esto indica que a medida cada vez las pendientes están más pronunciadas y ya hemos comprobado que es así al calcular las derivadas parciales de estas funciones.
Referencias
Sydsaeter, K., & Hammond, P. J. (1998). Matemáticas para el Análisis Económico (1st ed.; A. Otero, ed.). Prentice Hall.
En el estudio de máximos y mínimos de funciones en varias variables, comúnmente se encuentran restricciones sobre las variables involucradas, por ejemplo, al considerar una función de costos conjuntos de una empresa que produce dos artículos A y B tal que la cantidad total de unidades producidas debe ser igual a 200, en este caso tendríamos que
suponiendo que es la cantidad de unidades producidas del artículo A y
la cantidad de unidades producidas del artículo B.
También pudiera interesarte
Al encontrar restricciones sobre las variables, debemos ser cautelosos en el cálculo de los extremos relativos ya que debemos tomar consideraciones adicionales. Debemos entonces establecer un nuevo método que nos permita calcular estos extremos relativos. De esta forma definimos el Método de los Multiplicadores de Lagrange de la siguiente forma:
Sea una función en varias variables y sea
una restricción sobre estas variables. Para calcular los puntos críticos de esta función. consideramos una variable auxiliar
y definimos una función auxiliar
como sigue
Nuestro propósito será el de calcular los puntos críticos de esta función auxiliar , pues si
es un punto crítico de
, entonces
es punto crítico de
sujeta a la restricción indicada. Para esto debemos calcular la solución del siguiente sistema de ecuaciones:
Finalmente, evaluamos la función en los puntos que satisfacen el sistema de ecuaciones y a partir de los valores resultantes concluimos lo siguiente:
Veamos con algunos ejemplos como calcular los extremos relativos de funciones con restricción sobre sus variables.
Sea una función, cuyas variables están restringidas a
. Determine los extremos relativos de esta función considerando la restricción indicada.
Para empezar, debemos reescribir la restricción como una función de la siguiente forma
Obteniendo la función , definimos nuestra función auxiliar
como
Y planteamos el sistema de ecuaciones siguiente para calcular los puntos críticos de esta función:
Sustituimos y
en la última ecuación para hallar el valor de
Ahora sustituimos en
y
:
Concluimos entonces que el punto es el punto crítico de la función
y en consecuencia, el punto
es un punto crítico de la función
. Calculamos ahora las derivadas de orden superior de la función
para definir
.
Finalmente, como y
entonces por el criterio de la segunda derivada concluimos que la función
alcanza un mínimo relativo en el punto
.