Ejercicios Propuestos

Ejercicios Propuestos – Inecuaciones Lineales

Anuncios

Proceda paso a paso, explicando detalladamente cada paso con sus propias palabras. Calcule los valores de x que satisfacen las siguientes ecuaciones, escriba los conjuntos solución y además, represente la solución gráficamente en la recta real.

  1. x + 6 < 5
  2. x + 1 > 7
  3. x + 3 \leq 8
  4. x + 2 \geq 4

  1. 11 - x \geq 54
  2. 25 - x > 12
  3. 41 - x < 96
  4. 32 - x \leq 71

  1. 2x + 6 < 15
  2. 8x + 1 > 27
  3. 6x + 3 \geq 88
  4. 10x + 2 \leq 74
  1. 32 - 5x < -71
  2. 41 - 6x > -96
  3. 25 - 7x \leq -12
  4. 11 - 8x \geq -54
  1. 8x - 2 < 5x + 4
  2. 2x - 3 \geq 8 - 2x
  3. 3x - 7 > -x + 1
  4. 9x - 6 \leq 5 + 3x
  1. 25 < x + 102 < 300
  2. 45 \leq x + 65 < 78
  3. 12 < x + 20 \leq 39
  4. 78 \leq x + 45 \leq 255

  1. 78 > x + 45 > -255
  2. 12 \geq x + 20 > -39
  3. 45 > x + 65 \geq -78
  4. 25 \geq x + 102 \geq -300

  1. 45 < 2x + 10 < 50
  2. 10 < 6x + 2 \leq 21
  3. 25 \leq 3x + 5 < 30
  4. 8 \leq 9x + 45 \leq 67

  1. -78 > -2x + 45 > -255
  2. -12 > -5x + 20 \geq -39
  3. -45 \geq -7x + 65 > -78
  4. -25 \geq -3x + 102 \geq -300

  1. 45 \leq 4 - 3x \leq 50
  2. 10 > 5 + 5x \geq 21
  3. 25 < 7 + 2x < 30
  4. 8 < 10 - 6x \leq 67

Anuncios
Ejercicios Propuestos

Ejercicios Propuestos – Optimización (en varias variables)

Anuncios

Calcule los puntos críticos de las siguientes funciones y determine si estos representan máximos, mínimos o puntos de silla. Utilice el Criterio de la Segunda Derivada, recordando que debe usar la función auxiliar

D(x,y) = f_{xx}(x,y) \cdot f_{yy}(x,y) - [f_{xy}(x,y)]^2

  1. f(x,y) = 0.04x^2 + 63x + 73y + 950
  2. f(x,y) = 2x^2 - 15x + 10y + 4.5xy
  3. f(x,y) = 0.8x^2 + 5x - 7y + 10xy+898
  4. f(x,y) = 20x - 2y^2 + 30y - 32xy-575

  1. f(x,y) = 0.3x^2 + 3.5y^2 + 455
  2. f(x,y) = 1.8x^2 - 0.8y^2 + 2.34xy
  3. f(x,y) = -5x^2 + 9y^2 + 18.1xy+21
  4. f(x,y) = -2x^2 - 2.7y^2 - 3.7xy-525

  1. f(x,y) = 0.2x^2 + 22x + 35y^2 + 763
  2. f(x,y) = 16x^2 - 10x + 5y^2 + 6xy
  3. f(x,y) = 5x^2 + 9y^2 + 10y + 0.11xy+724
  4. f(x,y) = 2x^2 + 20x + 30y^2 - 3.22xy-815

  1. f(x,y) = 0.1x^2 + 5x + 0.2y^2 + 3y + 57
  2. f(x,y) = -0.5x^2 + 22x + 0.65y^2 + 30y + 6.1xy
  3. f(x,y) = x^2 + 10x - 1.5y^2 + 12y + 7xy+619
  4. f(x,y) = -x^2 + 5x - 5y^2 + 2.5y - 0.97xy-313

Soluciones

Ejercicio 8

Ejercicios Propuestos

Ejercicios Propuestos – Ecuaciones Polinómicas

Anuncios

Proceda paso a paso, explicando detalladamente cada paso con sus propias palabras.

Calcule la solución de la ecuación polinómica planteada (igualando toda la expresión a cero, agrupando todos los elementos en el lado izquierdo de la igualdad) y posteriormente factorice la expresión polinómica resultante.

  1. x^{2} + x - 68 = x - 4
  2. x^{2} + 18 x + 73 = x + 1
  3. x^{2} + 5 x + 6 = x + 6
  4. x^{2} - 5 x + 2 = x - 3

  1. - 6 x^{2} - 26 x + 56 = 4 x^{2} + 4 x - 224
  2. - 14 x^{2} - 26 x + 568 = - 10 x^{2} - 30 x + 400
  3. 5 x^{2} + 32 x + 48 = 2 x^{2} + 26 x + 72
  4. - 2 x - 8 = - x^{2} - 9 x - 20

  1. 3 x^{3} - 137 x^{2} + 64 x + 4330 = - 7 x^{3} - 7 x^{2} + 154 x + 280
  2. 2 x^{3} + 8 x^{2} - 156 x - 336 = - x^{3} - x^{2} + 6 x
  3. - 18 x^{3} + 36 x^{2} - 54 x + 1944 = - 9 x^{3} + 144 x^{2} - 297 x - 2430
  4. - 17 x^{3} - 162 x^{2} + 357 x + 4750 = - 8 x^{3} - 72 x^{2} + 528 x + 4480

  1. - 9 x^{4} + 18 x^{3} + 417 x^{2} - 126 x - 3840 = - 3 x^{4} + 81 x^{2} + 162 x
  2. 9 x^{4} + 123 x^{3} + 369 x^{2} - 249 x + 756 = 3 x^{4} + 33 x^{3} - 39 x^{2} - 753 x + 756
  3. 6 x^{4} - 12 x^{3} - 656 x^{2} - 1418 x + 31780 = x^{4} - 22 x^{3} + 159 x^{2} - 418 x + 280
  4. x^{4} + 44 x^{3} + 530 x^{2} + 1972 x + 4365 = - 8 x^{4} - 64 x^{3} + 584 x^{2} + 4960 x + 7200

Anuncios
Ejercicios Propuestos

Ejercicios Propuestos – Productos Complementarios y Suplementarios

Anuncios

Para cada una de las siguientes funciones de demanda para los productos A y B. Calcule \dfrac{\partial q_A}{\partial p_A}, \dfrac{\partial q_A}{\partial p_B}, \dfrac{\partial q_B}{\partial p_B} y \dfrac{\partial q_B}{\partial p_A}; Determine si estas ecuaciones son de demanda y en caso de serlo, determine si los productos A y B son complementarios, suplementarios o ninguna de las dos. Recordando que

Dos productos A y B son Suplementarios si

\dfrac{\partial q_A}{\partial p_B} > 0 \text{ y } \dfrac{\partial q_B}{\partial p_A} > 0

Dos productos A y B son Complementarios si

\dfrac{\partial q_A}{\partial p_B} < 0 \text{ y } \dfrac{\partial q_B}{\partial p_A} < 0

  1. q_A = 200 - 30p_A + 5p_B
    q_B = 320 + 12p_A - 60 p_B
  2. q_A = 1000 - 68p_A + 15p_B
    q_B = 250 + 9p_A - 50 p_B
  3. q_A = 5 - 20p_A + 30p_B
    q_B = 10 + 31p_A - 31 p_B
  4. q_A = 10 - 0.2p_A + 0.3p_B
    q_B = 12 + 0.4p_A - 0.95p_B

  1. q_A = 3.5 - 5p_A - 6p_B
    q_B = 4.2 - 7p_A - 7 p_B
  2. q_A = 4.2 - 7.8p_A - 9p_B
    q_B = 13 - 3.7p_A - 2.6 p_B
  3. q_A = 7 - 5.4p_A - 9.6p_B
    q_B = 10 - 2.3 p_A - 4 p_B
  4. q_A = 1.9 - 8.1p_A - 4p_B
    q_B = 2.8 - 5.3p_A - 5.5 p_B

  1. q_A = 10\sqrt[3]{p_B} \cdot \sqrt[3]{p_A^2}
    q_B = 9.2\sqrt[3]{p_A} \cdot \sqrt[3]{p_B^2}
  2. q_A = 7\sqrt[4]{p_B} \cdot \sqrt[5]{p_A^4}
    q_B = 8\sqrt{p_A^3} \cdot \sqrt[4]{p_B^3}
  3. q_A = 5.5\sqrt{p_B^5} \cdot \sqrt[5]{p_A^3}
    q_B = 6.8\sqrt[7]{p_A^8} \cdot \sqrt[9]{p_B^7}
  4. q_A = 4\sqrt[3]{p_B^6} \cdot \sqrt[10]{p_A^2}
    q_B = 7.3\sqrt[5]{p_A^2} \cdot \sqrt[4]{p_B^6}
  1. q_A = 10\frac{\sqrt[3]{p_A} }{ \sqrt[3]{p_B^2}}
    q_B = 9.2\frac{\sqrt[3]{p_A} }{ \sqrt[3]{p_B^2}}
  2. q_A = 7\frac{\sqrt[4]{p_A} }{ \sqrt[5]{p_B^4}}
    q_B = 8\frac{\sqrt{p_B^3} }{ \sqrt[4]{p_A^3}}
  3. q_A = 5.5\frac{\sqrt{p_B^5} }{ \sqrt[5]{p_A^3}}
    q_B = 6.8\frac{\sqrt[7]{p_A^8} }{ \sqrt[9]{p_B^7}}
  4. q_A = 4\frac{\sqrt[3]{p_B^6} }{ \sqrt[10]{p_A^2}}
    q_B = 7.3\frac{\sqrt[5]{p_B^2} }{ \sqrt[4]{p_A^6}}

  1. q_A = \frac{11}{ \sqrt[3]{p_B} \cdot \sqrt[3]{p_A^2}}
    q_B = \frac{8.2}{ \sqrt[3]{p_A} \cdot \sqrt[3]{p_B^2}}
  2. q_A = \frac{8}{ \sqrt[4]{p_B} \cdot \sqrt[5]{p_A^4}}
    q_B = \frac{7}{ \sqrt{p_A^3} \cdot \sqrt[4]{p_B^3}}
  3. q_A = \frac{6.5}{ \sqrt{p_B^5} \cdot \sqrt[5]{p_A^3}}
    q_B = \frac{5.8}{ \sqrt[7]{p_A^8} \cdot \sqrt[9]{p_B^7}}
  4. q_A = \frac{5}{ \sqrt[3]{p_B^6} \cdot \sqrt[10]{p_A^2}}
    q_B = \frac{6.3}{ \sqrt[5]{p_A^2} \cdot \sqrt[4]{p_B^6}}

  1. q_A = {\rm e}^{3p_A} \cdot {\rm e}^{6p_B}
    q_B = {\rm e}^{5p_A} \cdot {\rm e}^{6p_B}
  2. q_A = {\rm e}^{10p_A} \cdot {\rm e}^{-7p_B}
    q_B = {\rm e}^{-5p_A} \cdot {\rm e}^{6p_B}
  3. q_A = {\rm e}^{-4p_A} \cdot {\rm e}^{3p_B}
    q_B = {\rm e}^{9p_A} \cdot {\rm e}^{-6p_B}
  4. q_A = {\rm e}^{-7p_A} \cdot {\rm e}^{-8p_B}
    q_B = {\rm e}^{-12p_A} \cdot {\rm e}^{-p_B}

Anuncios

Solución

Ejercicio 20

Ejercicio 23

Ejercicios Propuestos

Ejercicios Propuestos – Tasa Técnica de Sustitución y Tasa Marginal de Sustitución

Anuncios

Tasa Técnica de Sustitución (TTS)

1.- Una compañía que fabrica celulares ha determinado que cuando se emplean l horas de mano de obra y se invierten k miles de bolívares, la función de producción está expresada de la siguiente forma:

P(l,k) = \frac{45}{59} \cdot \sqrt[ 86 ]{ l^{81} } \cdot \sqrt[ 86 ]{ k^{5} }

Determine la Tasa Técnica de Sustitución.

2.- Una compañía que fabrica neveras ha determinado que cuando se emplean l horas de mano de obra y se invierten k miles de bolívares, la función de producción está expresada de la siguiente forma:

P(l,k) = \frac{37}{56} \cdot \sqrt[ 97 ]{ l^{95} } \cdot \sqrt[ 97 ]{ k^{2} }

Determine la Tasa Técnica de Sustitución.

3.- Una compañía que fabrica cristales ha determinado que cuando se emplean l horas de mano de obra y se invierten k miles de bolívares, la función de producción está expresada de la siguiente forma:

P(l,k) = \frac{61}{99} \cdot \sqrt[ 19 ]{ l^{18} } \cdot \sqrt[ 19 ]{ k }

Determine la Tasa Técnica de Sustitución.

4.- Una compañía que fabrica trajes de baño ha determinado que cuando se emplean l horas de mano de obra y se invierten k miles de bolívares, la función de producción está expresada de la siguiente forma:

P(l,k) = \frac{14}{27} \cdot \sqrt[ 6 ]{ l^{5} } \cdot \sqrt[ 6 ]{ k }

Determine la Tasa Técnica de Sustitución.

5.- Una compañía que fabrica metras/canicas ha determinado que cuando se emplean l horas de mano de obra y se invierten k miles de bolívares, la función de producción está expresada de la siguiente forma:

P(l,k) = \frac{119}{22} \cdot \sqrt[ 44 ]{ l^{5} } \cdot \sqrt[ 44 ]{ k^{39} }-\sqrt[ 44 ]{ l^{49} } \cdot \sqrt[ 44 ]{ k^{83} }

Determine la Tasa Técnica de Sustitución.

6.- Una compañía que fabrica helados ha determinado que cuando se emplean l horas de mano de obra y se invierten k miles de bolívares, la función de producción está expresada de la siguiente forma:

P(l,k) = \frac{315}{59} \cdot \sqrt[ 77 ]{ l^{52} } \cdot \sqrt[ 77 ]{ k^{25} }-\sqrt[ 77 ]{ l^{129} } \cdot \sqrt[ 77 ]{ k^{102} }

Determine la Tasa Técnica de Sustitución.

7.- Una compañía que fabrica jabones de baño ha determinado que cuando se emplean l horas de mano de obra y se invierten k miles de bolívares, la función de producción está expresada de la siguiente forma:

P(l,k) = \frac{219}{33} \cdot \sqrt[ 15 ]{ l } \cdot \sqrt[ 15 ]{ k^{14} }-\sqrt[ 15 ]{ l^{16} } \cdot \sqrt[ 15 ]{ k^{29} }

Determine la Tasa Técnica de Sustitución.

8.- Una compañía que fabrica jugos empaquetados ha determinado que cuando se emplean l horas de mano de obra y se invierten k miles de bolívares, la función de producción está expresada de la siguiente forma:

P(l,k) = \frac{158}{95} \cdot \sqrt[ 32 ]{ l^{3} } \cdot \sqrt[ 32 ]{ k^{29} }-\sqrt[ 32 ]{ l^{35} } \cdot \sqrt[ 32 ]{ k^{61} }

Determine la Tasa Técnica de Sustitución.

Anuncios

Tasa Marginal de Sustitución

Reduzcamos una situación en la que un individuo de la sociedad sólo puede dedicar su tiempo a dos usos respecto al mercado: horas de trabajo y horas de no trabajo.

Denotaremos las horas de trabajo con la variable l (labor en inglés) y si por cada hora de trabajo obtiene un ingreso de w, entonces, considerando que este individuo puede adquirir bienes si trabaja, definimos la variable consumo c = l \cdot w.

Definiremos las horas de no trabajo como horas de ocio y las denotaremos con la variable h, estas representan las horas que dedica a trabajar en casa (no en el mercado), ver televisión o navegar en las redes sociales.

9.- Suponga que las preferencias de un individuo están determinadas a través de la siguiente función de utilidad:

U(c,h) = \frac{12}{83} \cdot \sqrt[ 55 ]{ c^{18} } \cdot \sqrt[ 55 ]{ h^{37} }

Determine la Tasa Marginal de Sustitución.

10.- Suponga que las preferencias de un individuo están determinadas a través de la siguiente función de utilidad:

U(c,h) = \frac{25}{38} \cdot \sqrt[ 55 ]{ c^{27} } \cdot \sqrt[ 55 ]{ h^{28} }

Determine la Tasa Marginal de Sustitución.

11.- Suponga que las preferencias de un individuo están determinadas a través de la siguiente función de utilidad:

U(c,h) = \frac{12}{31} \cdot \sqrt[ 97 ]{ c^{40} } \cdot \sqrt[ 97 ]{ h^{57} }

Determine la Tasa Marginal de Sustitución.

12.- Suponga que las preferencias de un individuo están determinadas a través de la siguiente función de utilidad:

U(c,h) = \frac{25}{74} \cdot \sqrt[ 31 ]{ c^{22} } \cdot \sqrt[ 31 ]{ h^{9} }

Determine la Tasa Marginal de Sustitución.

13.- Suponga que las preferencias de un individuo están determinadas a través de la siguiente función de utilidad:

U(c,h) = \frac{18}{89} \cdot \sqrt[ 43 ]{ c^{9} } \cdot \sqrt[ 43 ]{ h^{63} }

Determine la Tasa Marginal de Sustitución.

14.- Suponga que las preferencias de un individuo están determinadas a través de la siguiente función de utilidad:

U(c,h) = \frac{54}{77} \cdot \sqrt[ 83 ]{ c^{89} } \cdot \sqrt[ 83 ]{ h^{4} }

Determine la Tasa Marginal de Sustitución.

15.- Suponga que las preferencias de un individuo están determinadas a través de la siguiente función de utilidad:

U(c,h) = \frac{82}{85} \cdot \sqrt[ 33 ]{ c^{47} } \cdot \sqrt[ 48 ]{ h }

Determine la Tasa Marginal de Sustitución.

16.- Suponga que las preferencias de un individuo están determinadas a través de la siguiente función de utilidad:

U(c,h) = \frac{21}{88} \cdot \sqrt[ 9 ]{ c^{41} } \cdot \sqrt[ 91 ]{ h^{50} }

Determine la Tasa Marginal de Sustitución.

Anuncios

Solución

Ejercicio 1