Curvas de Indiferencia y TMS

En la economía, la utilidad estudia el nivel de satisfacción de un individuo respecto a la forma en que este clasifica distintas situaciones, sin embargo, este tipo de funciones no se pueden cuantificar de forma rigurosa pues la satisfacción es algo muy subjetivo ya que la utilidad de una persona no sólo depende de los bienes materiales que consume, sino también de sus actitudes psicológicas, de las presiones de su grupo social, de sus experiencias personales y del entorno cultural en general según Walter Nicholson en su libro de Teoría Microeconómica, Principios básicos y ampliaciones, es por esto que se restringe el estudio de este tipo de funciones a variables que se puedan medir como las cantidades relativas de alimento, horas de trabajo semanales o tasas fiscales, las variables que no podemos medir se suponen como constantes, esto se le llama en los libros de texto económicos ceteris paribus.

También pudiera interesarte

Consideremos el caso particular en que una vez presentados n bienes distintos, un individuo debe escoger cantidades x_1, x_2, \ldots, x_n de dichos bienes. Entonces, representaremos la forma en que este individuo clasifica estos bienes definiendo una función de utilidad de la siguiente forma:

U(x_1, x_2, \ldots, x_n)

Cuando sólo se toman en consideración dos bienes, entonces la función de utilidad se expresa sólo para la cantidad de estos dos bienes x y y:

U(x,y)

La curva de nivel U(x,y) = U_0 representa todas las combinaciones de x y y que proveen al individuo un nivel de satisfacción igual a U_0. Esta curva de nivel se llama curva de indiferencia pues al ellas representar todas las combinaciones de las canastas del mercado que proveen al individuo el mismo nivel de satisfacción, este se mostrará indiferente entre una canasta y otra. De forma general, si la función U(x,y) es una función de Cobb-Douglas, su gráfica estará representada de la siguiente forma:

La curva de indiferencia además de mostrar las combinaciones de los bienes x y y, nos permiten observar que en que medida un individuo está dispuesto a intercambiar los bienes para obtener el mismo nivel de satisfacción. De forma que si tiene las cantidades x_0 y y_0 de un bien, la cantidad de unidades de y que intercambia para obtener una unidad de x está definida como la tasa marginal de sustitución (TMS) y está determinada por la pendiente negativa de la curva U_0 en el punto (x_0,y_0), es decir,

TMS = -\frac{dy}{dx}

Calculada a partir de la función implícita U(x,y)=U_0.

¿Cómo calcular la TMS?

Es posible determinar la tasa marginal de sustitución calculando derivadas parciales pues si tomamos en cuenta que el diferencial de la función de utilidad está dada por dU = \frac{\partial U}{\partial x} dx + \frac{\partial U}{\partial y} dy, entonces el diferencial de la curva de nivel U_0 será

\frac{\partial U}{\partial x} dx + \frac{\partial U}{\partial y} dy = 0 \ \Longrightarrow \ \frac{\partial U}{\partial y} dy = -\frac{\partial U}{\partial x} dx

A partir de esta igualdad, podemos obtener la derivada \frac{dy}{dx} haciendo un abuso de la notación para despejar los diferenciales de x y y de la siguiente forma

\dfrac{dy}{dx} = -\dfrac{\frac{\partial U}{\partial x}}{\frac{\partial U}{\partial y}} \ \Longrightarrow \ -\dfrac{dy}{dx} = \dfrac{\frac{\partial U}{\partial x}}{\frac{\partial U}{\partial y}} \ \Longrightarrow \ TMS = \dfrac{\frac{\partial U}{\partial x}}{\frac{\partial U}{\partial y}}

Ejemplos

Reduzcamos una situación en la que un individuo de la sociedad sólo puede dedicar su tiempo a dos usos respecto al mercado: horas de trabajo y horas de no trabajo.

Denotaremos las horas de trabajo con la variable l (labor en inglés) y si por cada hora de trabajo obtiene un ingreso de w, entonces, considerando que este individuo puede adquirir bienes si trabaja, definimos la variable consumo c = l \cdot w.

Definiremos las horas de no trabajo como horas de ocio y las denotaremos con la variable h, estas representan las horas que dedica a trabajar en casa (no en el mercado), ver televisión o navegar en las redes sociales.

Suponga que las preferencias de este individuo están determinadas a través de la siguiente función de utilidad:

U(C,H)=3\sqrt[5]{C^2} \cdot \sqrt[5]{H^3}

Para determinar la TMS. Debemos calcular ambas funciones de utilidad marginal. Previamente, debemos notar que U(C,H)=3\sqrt[5]{C^2} \cdot \sqrt[5]{H^3} = 3 C^{\frac{2}{5}} \cdot H^{\frac{3}{5}}, por lo tanto

\frac{\partial U}{\partial C} = 3 \cdot \frac{2}{5} \cdot C^{-\frac{3}{5}} \cdot H^{\frac{3}{5}} = \frac{6}{5} \cdot \frac{H^{\frac{3}{5}}}{C^{\frac{3}{5}}} = \frac{6}{5} \cdot \frac{\sqrt[5]{H^3}}{\sqrt[5]{C^3}}

\frac{\partial U}{\partial H} = 3 \cdot \frac{3}{5} \cdot H^{-\frac{2}{5}} \cdot C^{\frac{2}{5}} = \frac{9}{5} \cdot \frac{C^{\frac{2}{5}}}{H^{\frac{2}{5}}} = \frac{9}{5} \cdot \frac{\sqrt[5]{C^2}}{\sqrt[5]{H^2}}

Luego,

TTS = \dfrac{\frac{\partial U}{\partial C}}{\frac{\partial U}{\partial H}} = \frac{ \frac{6}{5} \cdot \frac{\sqrt[5]{H^3}}{\sqrt[5]{C^3}}}{\frac{9}{5} \cdot \frac{\sqrt[5]{C^2}}{\sqrt[5]{H^2}}} = \frac{2}{3}\frac{H}{C}


Curva Isocuanta y TTS

Si una empresa decide fijar su producción en una cantidad P_0, una vez que ha determinado que su función de producción está dada de la forma P(L,K), podemos representar mediante una curva de nivel todas las combinaciones posibles de trabajo y capital que mantendrán la producción fija en P_0. Esta curva de nivel será llamada Curva Isocuanta (igual cantidad) y de forma general, si la función P(L,K) es una función de Cobb-Douglas, su gráfica estará definida de la siguiente forma:

También pudiera interesarte

La curva isocuanta además de mostrar las combinaciones de los bienes L y K, nos permiten observar que en que medida se puede intercambiar capital por trabajo manteniendo el mismo nivel de producción. De forma que si se trabajan L_0 horas semanales y se invierten K_0 unidades de capital, la cantidad de unidades de K que se intercambian por unidades de trabajo L está definida como la tasa técnica de sustitución (TTS) y está determinada por la pendiente negativa de la curva P_0 en el punto (L_0,K_0), es decir,

TTS = -\frac{dL}{dK}

Calculada a partir de la función implícita P(L,K)=P_0.

¿Cómo calcular la TTS?

Es posible determinar la tasa marginal de sustitución calculando derivadas parciales pues si tomamos en cuenta que el diferencial de la función de producción está dada por dP = \frac{\partial P}{\partial L} dL + \frac{\partial P}{\partial K} dK, entonces el diferencial de la curva de nivel P_0 será

\frac{\partial P}{\partial L} dL + \frac{\partial P}{\partial K} dK = 0 \ \Longrightarrow \ \frac{\partial P}{\partial K} dK = -\frac{\partial P}{\partial L} dL

A partir de esta igualdad, podemos obtener la derivada \frac{dK}{dL} haciendo un abuso del lenguaje para despejar los diferenciales de L y K de la siguiente forma

\dfrac{dK}{dL} = -\dfrac{\frac{\partial P}{\partial L}}{\frac{\partial P}{\partial K}} \ \Longrightarrow \ -\dfrac{dK}{dL} = \dfrac{\frac{\partial P}{\partial L}}{\frac{\partial P}{\partial K}} \ \Longrightarrow \ TTS = \dfrac{\frac{\partial P}{\partial L}}{\frac{\partial P}{\partial K}}

Ejemplo

Considerando una compañía que fabrica los plátano chips, ésta ha determinado que la función de producción es P(L,K)=\sqrt{L \cdot K}, donde L es el número de horas de trabajo por semana y K es el capital (expresado en miles de Perolitos por semana) requerido para la producción semanal de P gruesas de plátano chips (Una gruesa es una cantidad de artículos equivalente a doce docenas, es decir, 144 artículos.). Determine la Tasa Técnica de Sustitución.


Nota: Perolitos (Ps.) es la moneda oficial de totumat.


Debemos calcular ambas funciones de producción marginal, previamente, debemos notar que P(L,K)=\sqrt{L\cdot K} = (L \cdot K)^{\frac{1}{2}} = L^{\frac{1}{2}} \cdot k^{\frac{1}{2}}, por lo tanto

\dfrac{\partial P}{\partial L} = \frac{1}{2} \cdot L^{-\frac{1}{2}} \cdot K^{\frac{1}{2}} = \frac{1}{2} \cdot \frac{K^{\frac{1}{2}}}{L^{\frac{1}{2}}} = \frac{1}{2} \cdot \frac{\sqrt{K}}{\sqrt{L}}

\dfrac{\partial P}{\partial K} = \frac{1}{2} \cdot K^{-\frac{1}{2}} \cdot L^{\frac{1}{2}} = \frac{1}{2} \cdot \frac{L^{\frac{1}{2}}}{K^{\frac{1}{2}}} = \frac{1}{2} \cdot \frac{\sqrt{L}}{\sqrt{K}}

Luego,

TTS = \dfrac{\frac{\partial P}{\partial L}}{\frac{\partial P}{\partial K}} = \frac{\frac{1}{2} \cdot \frac{\sqrt{K}}{\sqrt{L}}}{\frac{1}{2} \cdot \frac{\sqrt{L}}{\sqrt{K}}} = \frac{K}{L}


Curvas de Nivel

Hemos visto de forma muy superficial uno de los métodos para graficar funciones en varias variables, otro de los métodos para entender el comportamiento gráfico de este tipo de funciones es conocido como las curvas de nivel y se basa en el método que usan los cartógrafos para diseñar mapas de la superficie terrestre (y de otros cuerpos celestes). Este método consiste en dibujar los contornos que unen los puntos del mapa que representan las posiciones del terreno con la misma altitud sobre el nivel del mar, por ejemplo, el contorno de todos los puntos que se encuentran a 100 metros por encima del nivel del mar. Cuando estas curvas están muy juntas, esto indica que las pendientes están muy pronunciadas.

Veamos en la siguiente imagen tomada del mapa del relieve del Monte Everest que provee Google Maps, en las regiones donde las pendientes son menos empinadas es notorio que las curvas de nivel están bastante separadas en comparación con los alrededores de la cima del Monte Everest.

Recordemos que al definir las derivadas parciales, fijamos los valores de las variables x y y para generar curvas en planos paralelos a los planos YZ y XZ respectivamente. De esta forma, podemos representar geométricamente en una función fijando valores para la variable z para generar curvas en planos paralelos al plano XY.

Formalmente, si fijamos la variable z en un valor c, entonces la curva de nivel en c estará expresada de la forma z = f(x,y) = c.

Particularmente podemos cortar la gráfica de la función f(x,y) = x^2 + y^2 con el plano generado en z = 1 e incluso podemos estudiar sus curvas de nivel en distintos valores de z, por ejemplo, los valores enteros z=2,3,4,5,6 \ldots de la siguiente forma

Notando que a medida que crece el valor fijo de z las circunferencias están mas juntas, esto indica que a medida cada vez las pendientes están más pronunciadas y ya hemos comprobado que es así al calcular las derivadas parciales de estas funciones.


Referencias

Sydsaeter, K., & Hammond, P. J. (1998). Matemáticas para el Análisis Económico (1st ed.; A. Otero, ed.). Prentice Hall.

El Conjugado de una Suma

A continuación definiremos una expresión que está íntimamente relacionada con la diferencia de cuadrados, pues al encontrar la suma (o la resta según sea el caso) de dos números reales, podemos definir una expresión que nos permitirá escribir dicha resta como una diferencia de cuadrados.

También pudiera interesarte

Formalmente, Si a y b son dos números reales, el conjugado de la suma (a+b) está definido como (a-b). De igual forma, el conjugado de la resta (a-b) está definido como (a+b). Es decir, se cambia el signo que se encuentra entre ellos dos. La importancia del conjugado radica en que el producto de una suma por su conjugado es igual a una diferencia de cuadrados, es decir,

El Conjugado de una Suma | totumat.com

Esta igualdad se puede deducir efectuando la propiedad distributiva de los números reales, veamos entonces,

El Conjugado de una Suma | totumat.com

Este tipo de expresiones se encuentra a menudo en el desarrollo las operaciones algebraicas y se usa principalmente para simplificar operaciones, veamos en los siguientes ejemplos como identificar el conjugado de algunas expresiones:

Anuncios

Ejemplos

Ejemplo 1

Identifique el conjugado de 12 - 5. No tiene mucho sentido identificar el conjugado de esta expresión pues podemos simplemente efectuar la resta y obtener 7 como resultado.

Ejemplo 2

Identifique el conjugado de \sqrt{12} - 5. Notemos que uno de los sumando involucrados es raíz cuadrada de doce, por lo tanto no no se puede restar con cinco, entonces, concluimos que su conjugado es \sqrt{12} + 5.

Ejemplo 3

Identifique el conjugado de 3 + \sqrt{8}. Notemos que uno de los sumando involucrados es raíz cuadrada de ocho, por lo tanto no no se puede sumar con tres, entonces, concluimos que su conjugado es 3 - \sqrt{8}.

Ejemplo 4

Identifique el conjugado de 3x - 7. Notemos que uno de los sumando involucrados es tres por una incógnita, por lo tanto no se puede restar con siete, entonces, concluimos que su conjugado es 3x + 7.

Ejemplo 5

Identifique el conjugado de 15 + 4x. Notemos que uno de los sumando involucrados es cuatro por una incógnita, por lo tanto no se puede sumar con 15, entonces, concluimos que su conjugado es 15 - 4x.

Ejemplo 6

Identifique el conjugado de 6 + \sqrt{x+2}. Esta resta no se puede efectuar, entonces, concluimos que su conjugado es 6 - \sqrt{x+2}. Notando que el signo dentro de la raíz no cambia.


La Diferencia de Cuadrados

Al efectuar operaciones matemáticas es común toparse con restas entre dos números, sin embargo, al encontrar la resta de los cuadrados de dos números diremos que esta es una diferencia de cuadrados y es de nuestro particular interés porque a través de la propiedad distributiva, podemos expresarla como el producto de dos factores.

También pudiera interesarte

Formalmente, si a y b son dos números reales, entonces la diferencia de sus cuadrados será igual a la suma del primero más el segundo, multiplicado por la resta del primero por el segundo, es decir,

La Diferencia de Cuadrados | totumat.com

Esta igualdad se puede deducir efectuando la propiedad distributiva de los números reales, veamos entonces,

La Diferencia de Cuadrados | totumat.com

Este tipo de expresiones se encuentra a menudo en el desarrollo las operaciones algebraicas y se usa principalmente para factorizar operaciones, veamos en los siguientes ejemplos como aplicar esta operación:

Anuncios

Ejemplos

Ejemplo 1

Factorice la expresión 5^2 - 3^2. Notamos que en este caso, podemos simplemente aplicar la potencia cada uno de los sumandos y efectuar la resta directamente.

5^2 - 3^2 \ =\ 25 - 9

\ =\ 16

Ejemplo 2

Factorice la expresión x^2 - 9. Notamos que en este caso, uno de los sumandos es equis al cuadrado y el otro es nueve, así que no podemos efectuar la resta entre ellos así que aplicamos la diferencia de cuadrados notando que nueve es igual a tres al cuadrado.

x^2 - 9 \ =\ x^2 - 3^2

\ =\ (x-3)(x+3)

Ejemplo 3

Factorice la expresión x^2 - 2. Notamos que en este caso, uno de los sumandos es equis al cuadrado y el otro es dos, así que no podemos efectuar la resta entre ellos así que aplicamos la diferencia de cuadrados notando que dos se puede reescribir como 2 = \left( \sqrt{2} \right)^2.

x^2 - 2 \ =\ x^2 -\left( \sqrt{2} \right)^2

\ =\ \left(x-\sqrt{2}\right) \left(x+\sqrt{2}\right)

De esta forma, podemos notar que si la raíz cuadrada de un numero no es exacta, este se puede reescribir para poder usar la diferencia de cuadrados.

Anuncios

Ejemplo 4

Factorice la expresión 8 - x^6. Notamos que en este caso, uno de los sumandos es 8 y el otro es equis a la seis, así que no podemos efectuar la resta entre ellos así que aplicamos la diferencia de cuadrados notando que ocho se puede reescribir como 8 = \left( \sqrt{8} \right)^2 y equis a la seis como x^6 = \left( x^3 \right)^2.

8 - x^6 \ =\ \left( \sqrt{8} \right)^2 - \left(x^3 \right)^2

\ =\ \left(\sqrt{8}-x^3\right) \left(\sqrt{8}+x^3\right)

Ejemplo 5

Factorice la expresión 36x^4 - 5x^8. Notamos que en este caso, no podemos efectuar la resta entre ellos así que aplicamos la diferencia de cuadrados usando las observaciones expuestas en los ejemplos anteriores.

36x^4 - 5x^8 \ =\ \left( 6x^2 \right)^2 - \left( \sqrt{5}x^4 \right)^2

\ =\ \left(6x^2-\sqrt{5}x^4\right) \left(6x^2+\sqrt{5}x^4\right)