Ejercicios Propuestos

Ejercicios Propuestos – Operaciones entre polinomios

Anuncios

Suma de Polinomios

Proceda paso a paso, explicando detalladamente cada paso con sus propias palabras.

Considerando los polinomios P(x) y Q(x), calcule P(x) + Q(x).

  1. P(x) = x^{2} + 12 x + 35
    Q(x) = x - 6
  2. P(x) = x^{2} + 13 x + 40
    Q(x) = x + 6
  3. P(x) = x^{2} - 14 x + 48
    Q(x) = x + 7
  4. P(x) = x^{2} - 2 x - 15
    Q(x) = x
  1. P(x) = 2 x^{2} + 14 x + 12
    Q(x) = - 6 x^{2} + 54 x - 120
  2. P(x) = - 2 x^{2} - 14 x
    Q(x) = 8 x^{2} - 128 x + 504
  3. P(x) = 3 x^{2} + 42 x + 120
    Q(x) = x^{2} + x - 72
  4. P(x) = 4 x^{2} - 24 x - 64
    Q(x) = 3 x^{2} + 57 x + 270
  1. P(x) = - x^{3} - 3 x^{2} + 40 x + 84
    Q(x) = 8 x^{3} - 144 x^{2} + 648 x
  2. P(x) = - 6 x^{3} + 126 x^{2} - 840 x + 1728
    Q(x) = - 7 x^{3} - 7 x^{2} + 182 x - 168
  3. P(x) = - 10 x^{3} - 30 x^{2} + 760 x + 2880
    Q(x) = 8 x^{3} - 168 x^{2} + 1120 x - 2304
  4. P(x) = - 9 x^{3} - 198 x^{2} - 1413 x - 3240
    Q(x) = 9 x^{3} + 63 x^{2} - 900 x - 6300
  1. P(x) = 8 x^{4} - 600 x^{2} - 2000 x
    Q(x) = 6 x^{4} - 48 x^{3} - 246 x^{2} + 1368 x + 3240
  2. P(x) = - 10 x^{4} - 160 x^{3} - 690 x^{2} + 100 x + 4000
    Q(x) = x^{4} + 2 x^{3} - 59 x^{2} + 48 x + 108
  3. P(x) = - 3 x^{4} - 51 x^{3} - 186 x^{2} + 744 x + 4032
    Q(x) = 7 x^{4} + 70 x^{3} + 49 x^{2} - 126 x
  4. P(x) = - 2 x^{4} - 22 x^{3} + 32 x^{2} + 472 x - 480
    Q(x) = - 4 x^{4} - 48 x^{3} + 132 x^{2} + 1760 x - 3600
Anuncios

Resta de Polinomios

Proceda paso a paso, explicando detalladamente cada paso con sus propias palabras.

Considerando los polinomios P(x) y Q(x), calcule P(x) - Q(x).

  1. P(x) = x^{2} - x - 90
    Q(x) = x + 9
  2. P(x) = x^{2} + 8 x + 15
    Q(x) = x - 8
  3. P(x) = x^{2} - 11 x + 18
    Q(x) = x - 3
  4. P(x) = x^{2} + 6 x + 5
    Q(x) = x + 6
  1. P(x) = 5 x^{2} - 45 x + 70
    Q(x) = 7 x^{2} + 49 x + 84
  2. P(x) = 9 x^{2} + 108 x + 180
    Q(x) = 6 x^{2} - 24 x - 270
  3. P(x) = 6 x^{2} - 90 x + 300
    Q(x) = 2 x^{2} + 22 x + 56
  4. P(x) = 9 x^{2} + 144 x + 567
    Q(x) = - 4 x^{2} + 20 x + 144
  1. P(x) = - 10 x^{3} + 170 x^{2} - 880 x + 1440
    Q(x) = 9 x^{3} - 45 x^{2} - 252 x + 288
  2. P(x) = - 4 x^{3} - 32 x^{2} + 100 x + 800
    Q(x) = - 2 x^{3} + 2 x^{2} + 92 x + 160
  3. P(x) = 6 x^{3} + 12 x^{2} - 258 x + 240
    Q(x) = 5 x^{3} - 60 x^{2} + 160 x
  4. P(x) = 10 x^{3} + 180 x^{2} + 1070 x + 2100
    Q(x) = - 5 x^{3} + 40 x^{2} + 100 x
  1. P(x) = 9 x^{4} - 216 x^{3} + 1800 x^{2} - 6048 x + 6480
    Q(x) = - x^{4} - 14 x^{3} - 53 x^{2} - 40 x
  2. P(x) = - 6 x^{4} - 60 x^{3} + 360 x^{2} + 4860 x + 10206
    Q(x) = - 3 x^{4} - 33 x^{3} + 165 x^{2} + 2625 x + 6750
  3. P(x) = x^{4} - 12 x^{3} + 27 x^{2}
    Q(x) = 8 x^{4} - 64 x^{3} - 552 x^{2} + 5184 x - 7776
  4. P(x) = 10 x^{4} - 60 x^{3} - 320 x^{2} + 1500 x + 1750
    Q(x) = 10 x^{4} - 230 x^{3} + 1740 x^{2} - 4720 x + 3200
Anuncios

Producto de Polinomios

Proceda paso a paso, explicando detalladamente cada paso con sus propias palabras.

Considerando los polinomios P(x) y Q(x), calcule P(x) \cdot Q(x).

  1. P(x) = x^{2} + 19 x + 90
    Q(x) = x + 2
  2. P(x) = x^{2} + 20 x + 100
    Q(x) = x - 10
  3. P(x) = x^{2} + 11 x + 30
    Q(x) = x - 3
  4. P(x) = x^{2} + 7 x - 30
    Q(x) = x - 2
  1. P(x) = 6 x^{2} - 36 x + 54
    Q(x) = - 7 x^{2} - 28 x + 35
  2. P(x) = 9 x^{2} - 45 x
    Q(x) = - 3 x^{2} - 33 x - 30
  3. P(x) = - 6 x^{2} - 36 x + 42
    Q(x) = 108 - 3 x^{2}
  4. P(x) = 7 x^{2} + 28 x - 224
    Q(x) = - x^{2} - 2 x + 48
  1. P(x) = - x^{3} + 14 x^{2} - 55 x + 42
    Q(x) = - 6 x^{3} + 18 x^{2} + 198 x - 210
  2. P(x) = 7 x^{3} - 84 x^{2} - 28 x + 1680
    Q(x) = 2 x^{3} + 6 x^{2} - 98 x - 294
  3. P(x) = 4 x^{3} + 8 x^{2} - 284 x - 288
    Q(x) = 9 x^{3} + 27 x^{2} - 360 x - 756
  4. P(x) = - 10 x^{3} + 40 x^{2} + 10 x - 40
    Q(x) = 3 x^{3} - 36 x^{2} - 39 x + 1080
  1. P(x) = 6 x^{4} - 12 x^{3} - 450 x^{2} - 384 x + 840
    Q(x) = - 10 x^{4} - 180 x^{3} - 640 x^{2} + 2880 x + 12800
  2. P(x) = - 10 x^{4} + 370 x^{2} - 840 x
    Q(x) = - 8 x^{4} - 232 x^{3} - 2464 x^{2} - 11360 x - 19200
  3. P(x) = - 2 x^{4} - 2 x^{3} + 152 x^{2} - 328 x - 480
    Q(x) = - 10 x^{4} - 50 x^{3} + 710 x^{2} + 1650 x - 13500
  4. P(x) = 5 x^{4} - 75 x^{3} + 310 x^{2} + 60 x - 1800
    Q(x) = 4 x^{4} + 100 x^{3} + 900 x^{2} + 3420 x + 4536
Anuncios

Producto de Polinomios

Proceda paso a paso, explicando detalladamente cada paso con sus propias palabras.

Considerando los polinomios P(x) y Q(x), calcule P(x) \div Q(x).

  1. P(x) = x^{2} - x - 72
    Q(x) = x + 8
  2. P(x) = x^{2} - 64
    Q(x) = x + 3
  3. P(x) = x^{2} - 9
    Q(x) = x + 4
  4. P(x) = x^{2} - 2 x - 80
    Q(x) = x - 9
  1. P(x) = 10 x^{2} + 70 x
    Q(x) = 5 x + 30
  2. P(x) = - 24 x^{2} + 264 x - 576
    Q(x) = 6 x - 18
  3. P(x) = - 49 x^{2} + 637 x - 1470
    Q(x) = 7 x - 7
  4. P(x) = - 56 x^{2} - 280 x - 224
    Q(x) = 8 x + 8
  1. P(x) = 6 x^{3} - 6 x^{2} - 24 x + 24
    Q(x) = x - 10
  2. P(x) = - 7 x^{3} - 7 x^{2} + 455 x - 441
    Q(x) = x + 8
  3. P(x) = - 5 x^{3} - 20 x^{2} + 5 x + 20
    Q(x) = x + 3
  4. P(x) = 3 x^{3} + 9 x^{2} - 228 x - 864
    Q(x) = x + 7
  1. P(x) = - 9 x^{4} - 54 x^{3} + 225 x^{2} - 162 x
    Q(x) = x + 1
  2. P(x) = - 5 x^{4} + 50 x^{3} + 35 x^{2} - 320 x - 300
    Q(x) = x + 8
  3. P(x) = - 5 x^{4} + 35 x^{3} + 590 x^{2} - 3500 x - 9000
    Q(x) = x
  4. P(x) = 9 x^{4} + 72 x^{3} - 945 x^{2} - 4500 x + 31500
    Q(x) = x + 3
Anuncios
Anuncio publicitario

Un comentario en “Ejercicios Propuestos – Operaciones entre polinomios

¿Tienes alguna duda? Compártela en los comentarios.

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.