Ejercicios Propuestos

Ejercicios Propuestos – Operaciones entre polinomios

Anuncios

Suma de Polinomios

Proceda paso a paso, explicando detalladamente cada paso con sus propias palabras.

Considerando los polinomios P(x) y Q(x), calcule P(x) + Q(x).

  1. P(x) = x^{2} + 12 x + 35
    Q(x) = x - 6
  2. P(x) = x^{2} + 13 x + 40
    Q(x) = x + 6
  3. P(x) = x^{2} - 14 x + 48
    Q(x) = x + 7
  4. P(x) = x^{2} - 2 x - 15
    Q(x) = x
  1. P(x) = 2 x^{2} + 14 x + 12
    Q(x) = - 6 x^{2} + 54 x - 120
  2. P(x) = - 2 x^{2} - 14 x
    Q(x) = 8 x^{2} - 128 x + 504
  3. P(x) = 3 x^{2} + 42 x + 120
    Q(x) = x^{2} + x - 72
  4. P(x) = 4 x^{2} - 24 x - 64
    Q(x) = 3 x^{2} + 57 x + 270
  1. P(x) = - x^{3} - 3 x^{2} + 40 x + 84
    Q(x) = 8 x^{3} - 144 x^{2} + 648 x
  2. P(x) = - 6 x^{3} + 126 x^{2} - 840 x + 1728
    Q(x) = - 7 x^{3} - 7 x^{2} + 182 x - 168
  3. P(x) = - 10 x^{3} - 30 x^{2} + 760 x + 2880
    Q(x) = 8 x^{3} - 168 x^{2} + 1120 x - 2304
  4. P(x) = - 9 x^{3} - 198 x^{2} - 1413 x - 3240
    Q(x) = 9 x^{3} + 63 x^{2} - 900 x - 6300
  1. P(x) = 8 x^{4} - 600 x^{2} - 2000 x
    Q(x) = 6 x^{4} - 48 x^{3} - 246 x^{2} + 1368 x + 3240
  2. P(x) = - 10 x^{4} - 160 x^{3} - 690 x^{2} + 100 x + 4000
    Q(x) = x^{4} + 2 x^{3} - 59 x^{2} + 48 x + 108
  3. P(x) = - 3 x^{4} - 51 x^{3} - 186 x^{2} + 744 x + 4032
    Q(x) = 7 x^{4} + 70 x^{3} + 49 x^{2} - 126 x
  4. P(x) = - 2 x^{4} - 22 x^{3} + 32 x^{2} + 472 x - 480
    Q(x) = - 4 x^{4} - 48 x^{3} + 132 x^{2} + 1760 x - 3600
Anuncios

Resta de Polinomios

Proceda paso a paso, explicando detalladamente cada paso con sus propias palabras.

Considerando los polinomios P(x) y Q(x), calcule P(x) - Q(x).

  1. P(x) = x^{2} - x - 90
    Q(x) = x + 9
  2. P(x) = x^{2} + 8 x + 15
    Q(x) = x - 8
  3. P(x) = x^{2} - 11 x + 18
    Q(x) = x - 3
  4. P(x) = x^{2} + 6 x + 5
    Q(x) = x + 6
  1. P(x) = 5 x^{2} - 45 x + 70
    Q(x) = 7 x^{2} + 49 x + 84
  2. P(x) = 9 x^{2} + 108 x + 180
    Q(x) = 6 x^{2} - 24 x - 270
  3. P(x) = 6 x^{2} - 90 x + 300
    Q(x) = 2 x^{2} + 22 x + 56
  4. P(x) = 9 x^{2} + 144 x + 567
    Q(x) = - 4 x^{2} + 20 x + 144
  1. P(x) = - 10 x^{3} + 170 x^{2} - 880 x + 1440
    Q(x) = 9 x^{3} - 45 x^{2} - 252 x + 288
  2. P(x) = - 4 x^{3} - 32 x^{2} + 100 x + 800
    Q(x) = - 2 x^{3} + 2 x^{2} + 92 x + 160
  3. P(x) = 6 x^{3} + 12 x^{2} - 258 x + 240
    Q(x) = 5 x^{3} - 60 x^{2} + 160 x
  4. P(x) = 10 x^{3} + 180 x^{2} + 1070 x + 2100
    Q(x) = - 5 x^{3} + 40 x^{2} + 100 x
  1. P(x) = 9 x^{4} - 216 x^{3} + 1800 x^{2} - 6048 x + 6480
    Q(x) = - x^{4} - 14 x^{3} - 53 x^{2} - 40 x
  2. P(x) = - 6 x^{4} - 60 x^{3} + 360 x^{2} + 4860 x + 10206
    Q(x) = - 3 x^{4} - 33 x^{3} + 165 x^{2} + 2625 x + 6750
  3. P(x) = x^{4} - 12 x^{3} + 27 x^{2}
    Q(x) = 8 x^{4} - 64 x^{3} - 552 x^{2} + 5184 x - 7776
  4. P(x) = 10 x^{4} - 60 x^{3} - 320 x^{2} + 1500 x + 1750
    Q(x) = 10 x^{4} - 230 x^{3} + 1740 x^{2} - 4720 x + 3200
Anuncios

Producto de Polinomios

Proceda paso a paso, explicando detalladamente cada paso con sus propias palabras.

Considerando los polinomios P(x) y Q(x), calcule P(x) \cdot Q(x).

  1. P(x) = x^{2} + 19 x + 90
    Q(x) = x + 2
  2. P(x) = x^{2} + 20 x + 100
    Q(x) = x - 10
  3. P(x) = x^{2} + 11 x + 30
    Q(x) = x - 3
  4. P(x) = x^{2} + 7 x - 30
    Q(x) = x - 2
  1. P(x) = 6 x^{2} - 36 x + 54
    Q(x) = - 7 x^{2} - 28 x + 35
  2. P(x) = 9 x^{2} - 45 x
    Q(x) = - 3 x^{2} - 33 x - 30
  3. P(x) = - 6 x^{2} - 36 x + 42
    Q(x) = 108 - 3 x^{2}
  4. P(x) = 7 x^{2} + 28 x - 224
    Q(x) = - x^{2} - 2 x + 48
  1. P(x) = - x^{3} + 14 x^{2} - 55 x + 42
    Q(x) = - 6 x^{3} + 18 x^{2} + 198 x - 210
  2. P(x) = 7 x^{3} - 84 x^{2} - 28 x + 1680
    Q(x) = 2 x^{3} + 6 x^{2} - 98 x - 294
  3. P(x) = 4 x^{3} + 8 x^{2} - 284 x - 288
    Q(x) = 9 x^{3} + 27 x^{2} - 360 x - 756
  4. P(x) = - 10 x^{3} + 40 x^{2} + 10 x - 40
    Q(x) = 3 x^{3} - 36 x^{2} - 39 x + 1080
  1. P(x) = 6 x^{4} - 12 x^{3} - 450 x^{2} - 384 x + 840
    Q(x) = - 10 x^{4} - 180 x^{3} - 640 x^{2} + 2880 x + 12800
  2. P(x) = - 10 x^{4} + 370 x^{2} - 840 x
    Q(x) = - 8 x^{4} - 232 x^{3} - 2464 x^{2} - 11360 x - 19200
  3. P(x) = - 2 x^{4} - 2 x^{3} + 152 x^{2} - 328 x - 480
    Q(x) = - 10 x^{4} - 50 x^{3} + 710 x^{2} + 1650 x - 13500
  4. P(x) = 5 x^{4} - 75 x^{3} + 310 x^{2} + 60 x - 1800
    Q(x) = 4 x^{4} + 100 x^{3} + 900 x^{2} + 3420 x + 4536
Anuncios

Producto de Polinomios

Proceda paso a paso, explicando detalladamente cada paso con sus propias palabras.

Considerando los polinomios P(x) y Q(x), calcule P(x) \div Q(x).

  1. P(x) = x^{2} - x - 72
    Q(x) = x + 8
  2. P(x) = x^{2} - 64
    Q(x) = x + 3
  3. P(x) = x^{2} - 9
    Q(x) = x + 4
  4. P(x) = x^{2} - 2 x - 80
    Q(x) = x - 9
  1. P(x) = 10 x^{2} + 70 x
    Q(x) = 5 x + 30
  2. P(x) = - 24 x^{2} + 264 x - 576
    Q(x) = 6 x - 18
  3. P(x) = - 49 x^{2} + 637 x - 1470
    Q(x) = 7 x - 7
  4. P(x) = - 56 x^{2} - 280 x - 224
    Q(x) = 8 x + 8
  1. P(x) = 6 x^{3} - 6 x^{2} - 24 x + 24
    Q(x) = x - 10
  2. P(x) = - 7 x^{3} - 7 x^{2} + 455 x - 441
    Q(x) = x + 8
  3. P(x) = - 5 x^{3} - 20 x^{2} + 5 x + 20
    Q(x) = x + 3
  4. P(x) = 3 x^{3} + 9 x^{2} - 228 x - 864
    Q(x) = x + 7
  1. P(x) = - 9 x^{4} - 54 x^{3} + 225 x^{2} - 162 x
    Q(x) = x + 1
  2. P(x) = - 5 x^{4} + 50 x^{3} + 35 x^{2} - 320 x - 300
    Q(x) = x + 8
  3. P(x) = - 5 x^{4} + 35 x^{3} + 590 x^{2} - 3500 x - 9000
    Q(x) = x
  4. P(x) = 9 x^{4} + 72 x^{3} - 945 x^{2} - 4500 x + 31500
    Q(x) = x + 3
Anuncios

Expresiones Racionales

Habiendo estudiado las operaciones entre polinomios, particularmente la división de polinomios, podemos ampliar las operaciones entre fracciones como una herramienta para simplificar las operaciones entre polinomios antes de efectuarlas.

También pudiera interesarte

Anuncios

Definimos una expresión racional como el cociente entre dos polinomios. Formalmente, si P(x) y Q(x) son dos polinomios con Q(x) \neq 0, entonces el siguiente cociente será una expresión racional:

\dfrac{P(x)}{Q(x)}

Diremos que P(x) es el numerador (o dividendo) de la expresión y Q(x) es el denominador (o divisor) de la expresión. En este caso, al ser, P(x) y Q(x) polinomios, este tipo de expresiones racionales serán expresiones algebraicas racionales.

Operaciones entre Expresiones Racionales

Las operaciones entre expresiones racionales se efectúan de la misma forma en que se efectúan las operaciones entre fracciones, es decir, si A(x), B(x), C(x) y D(x) son polinomios, con B(x) y D(x) distintos de cero, definimos:

Suma de Expresiones Racionales

\dfrac{A(x)}{B(x)} + \dfrac{C(x)}{D(x)} = \dfrac{A(x) \cdot D(x) + B(x) \cdot C(x)}{B(x) \cdot D(x)}

Resta de Expresiones Racionales

\dfrac{A(x)}{B(x)} - \dfrac{C(x)}{D(x)} = \dfrac{A(x) \cdot D(x) - B(x) \cdot C(x)}{B(x) \cdot D(x)}

Multiplicación de Expresiones Racionales

\dfrac{A(x)}{B(x)} \cdot \dfrac{C(x)}{D(x)} = \dfrac{A(x) \cdot C(x)}{B(x) \cdot D(x)}

División de Expresiones Racionales

\dfrac{A(x)}{B(x)} \div \dfrac{C(x)}{D(x)} = \dfrac{A(x) \cdot D(x)}{B(x) \cdot C(x)}

Anuncios

El objetivo de plantear expresiones racionales es el de simplificar expresiones que a primera vista parezcan complicadas o engorrosas para trabajar. Veamos en los siguientes ejemplos como efectuar operaciones entre expresiones racionales y de ser posible, su simplificación.

Ejemplos

Ejemplo 1

Efectúe la suma de las expresiones racionales \frac{2x+5}{2x+3} y \frac{6x+4}{8x+3}, y de ser posible, simplifique el resultado.

\dfrac{2x+5}{2x+3} + \dfrac{6x+4}{8x+3}

= \dfrac{(2x+5) \cdot (8x+3) + (2x+3) \cdot (6x+4)}{(2x+3) \cdot (8x+3)}

= \dfrac{ 16x^2 + 6x + 40x + 15 + 12x^2 + 8x + 18x + 12 }{(2x+3) \cdot (8x+3)}

= \dfrac{ 28x^2 + 72x + 27 }{(2x+3) \cdot (8x+3)}

Notemos que en el numerador se efectuó la propiedad distributiva en ambos sumandos para poder sumar los elementos comunes, sin embargo, en el denominador no hizo falta aplicar la propiedad distributiva, pues ya la expresión estaba factorizada.

Ejemplo 2

Efectúe la resta de las expresiones racionales \frac{7x-2}{3x+1} menos \frac{5x+2}{2x+4}, y de ser posible, simplifique el resultado.

\dfrac{7x-2}{3x+1} - \dfrac{5x+2}{2x+4}

= \dfrac{(7x-2) \cdot (2x+4) + (3x+1) \cdot (5x+2)}{(3x+1) \cdot (2x+4)}

= \dfrac{ 14x^2 + 28x - 4x - 8 - (15x^2 + 6x + 5x + 2) }{(3x+1) \cdot 2 (x+2)}

= \dfrac{ -x^2 + 13x - 10 }{2(3x+1) \cdot (x+2)}

Anuncios

Ejemplo 3

Efectúe el producto de las expresiones racionales \frac{4x^2+6}{-7x+2} y \frac{4x-3}{2x^2+3}, y de ser posible, simplifique el resultado.

\dfrac{4x^2+6}{-7x+2} \cdot \dfrac{4x-3}{2x^2+3}

= \dfrac{(4x^2+6) \cdot (4x-3)}{(-7x+2) \cdot (2x^2+3)}

= \dfrac{2 (2x^2+3) \cdot (4x-3)}{(-7x+2) \cdot (2x^2+3)}

= 2 \cdot \dfrac{(2x^2+3) \cdot (4x-3)}{(-7x+2) \cdot (2x^2+3)}

= 2 \cdot \dfrac{ (4x-3) \cdot (2x^2+3)}{(-7x+2) \cdot (2x^2+3)}

= 2 \cdot \dfrac{(4x-3)}{(-7x+2)}

Operaciones entre polinomios

Podemos definir las operaciones de suma, resta, multiplicación y división entre polinomios como una generalización de las operaciones que hemos definido entre los números reales.

También pudiera interesarte

Anuncios

Suma de polinomios

Para sumar o restar polinomios, recurrimos a la propiedad asociativa de los números reales, pues agrupamos los sumandos que tengan la misma potencia de x como factor, de forma que si consideramos dos polinomios P(x) = a_m x^m + \ldots + a_1 x + a_0 y Q(x) = b_n x^n + \ldots + b_1 x + b_0, donde el grado de P(x) es mayor que el grado de Q(x), es decir, m \geq n; definimos la suma P(x)+Q(x) de la siguiente forma:

Suma de Polinomios | totumat.com

De igual forma, definimos la resta P(x)-Q(x) de la siguiente forma:

Suma de Polinomios | totumat.com

Notando que si el grado de P(x) es estrictamente mayor que el grado de Q(x), entonces completamos el polinomio Q(x) con coeficientes ceros, es decir, b_i = 0 para todo i > n.

Veamos con algunos ejemplos como efectuar la suma de polinomios.

Anuncios

Ejemplos

Ejemplo 1

Considerando los polinomios P(x) = 3x^2 - 5x + 2 y Q(x) = 7x + 1, calcule la suma P(x) + Q(x).

Suma de Polinomios | totumat.com

Por lo tanto, P(x) + Q(x) = 3 x^2 + 2x + 3.

Ejemplo 2

Considerando los polinomios P(x) = 4x^6 + x^4 - 2x^2 + 9x + 12 y Q(x) = 3x^6 - 8x^5 + 4x^4 + x - 3, calcule la suma P(x) + Q(x).

Suma de Polinomios | totumat.com

Por lo tanto, P(x) + Q(x) = 7x^6 + 8x^5 - 5x^4 - 2x^2 + 10x + 15.

Ejemplo 3

Considerando los polinomios P(x) = 6x^3 + 7x^2 - 4 y Q(x) = 2x + 3, calcule la resta P(x) - Q(x).

Suma de Polinomios | totumat.com

Por lo tanto, P(x) - Q(x) = 6x^3 + 7x^2 - 2x - 7.

Ejemplo 4

Considerando los polinomios P(x) = -12x^6 + 3x^5 + 3x^4 - x^2 + 8x + 5 y Q(x) = x^6 + 5x^5 + 2x^4 - 4x^3 - 10x^2 - x, calcule la resta P(x) - Q(x).

Suma de Polinomios | totumat.com

Por lo tanto, P(x) - Q(x) = 11x^6 - 2x^5 + x^4 + 4x^3 + 9x^2 + 9x + 5.


Anuncios

Producto de polinomios

Para multiplicar polinomios, recurrimos a la propiedad distributiva de los números reales, de forma que si consideramos dos polinomios P(x) = a_m x^m + \ldots + a_1 x + a_0 y Q(x) = b_n x^n + \ldots + b_1 x + b_0, podemos definir el producto de estos dos polinomios distribuyendo los productos de la siguiente forma

Producto o Multiplicación de Polinomios | totumat.com

Una vez que se ha expandido este producto, lo podemos expresar como una sumatoria de la siguiente manera:

\sum_{i=1}^n \sum_{j=1}^m a_i b_j x^{i+j}

Este procedimiento pudiera resultar extenso y la notación del caso general pareciera engorrosa, sin embargo, efectuar el producto de polinomios no es más que la aplicación de la propiedad distributiva para los números reales y la posterior aplicación de las propiedades de las potencias para sumar los exponentes.

Veamos en los siguientes ejemplos como calcular algunos productos entre polinomios.

Anuncios

Ejemplos

Ejemplo 5

Considerando los polinomios P(x) = 4 x + 3 y Q(x) = - 10 x - 4. Calcule el producto P(x) \cdot Q(X), es decir,

\left( 4 x + 3 \right) \cdot \left( - 10 x - 4 \right)

Aplicamos la propiedad distributiva y escribimos los productos resultantes en orden para facilitar la suma de los sumandos correspondientes

Producto o Multiplicación de Polinomios | totumat.com

Por lo tanto el producto de los polinomios P(x) y Q(x) es igual a

- 40 x^{2} - 46 x - 12

Ejemplo 6

Considerando los polinomios P(x) = 6 x^{2} - 8 x + 2 y Q(x) = x^{2} + 5 x + 6. Calcule el producto P(x) \cdot Q(X), es decir,

\left( 6 x^{2} - 8 x + 2 \right) \cdot \left( x^{2} + 5 x + 6 \right)

Aplicamos la propiedad distributiva y escribimos los productos resultantes en orden para facilitar la suma de los sumandos correspondientes

Producto o Multiplicación de Polinomios | totumat.com

Por lo tanto el producto de los polinomios P(x) y Q(x) es igual a

6 x^{4} + 22 x^{3} - 2 x^{2} - 38 x + 12

Ejemplo 7

Considerando los polinomios P(x) = 3 x^{2} - 6 x + 6 y Q(x) = - 9 x^{3} - 5 x^{2} + 4 x + 7. Calcule el producto P(x) \cdot Q(X), es decir,

\left( 3 x^{2} - 6 x + 6 \right) \cdot \left( - 9 x^{3} - 5 x^{2} + 4 x + 7 \right)

Aplicamos la propiedad distributiva y escribimos los productos resultantes en orden para facilitar la suma de los sumandos correspondientes

Producto o Multiplicación de Polinomios | totumat.com

Por lo tanto el producto de los polinomios P(x) y Q(x) es igual a

- 27 x^{5} + 39 x^{4} - 12 x^{3} - 33 x^{2} - 18 x + 42

Ejemplo 9

Considerando los polinomios P(x) = - 4 x^{3} + x^{2} - 2 x + 2 y Q(x) = 9 x^{2} - x + 4. Calcule el producto P(x) \cdot Q(X), es decir,

\left( - 4 x^{3} + x^{2} - 2 x + 2 \right) \cdot \left( 9 x^{2} - x + 4 \right)

Aplicamos la propiedad distributiva y escribimos los productos resultantes en orden para facilitar la suma de los sumandos correspondientes

Producto o Multiplicación de Polinomios | totumat.com

Por lo tanto el producto de los polinomios P(x) y Q(x) es igual a

- 36 x^{5} + 13 x^{4} - 35 x^{3} + 24 x^{2} - 10 x + 8


Anuncios

División de polinomios

Para definir la división entre polinomios, debemos hacer algunas observaciones sobre división entre números reales pues considerando p y q dos números enteros, al dividir p entre q, buscamos un número tal que al multiplicarlo por q el resultado sea exactamente p, es decir, un número entero c tal que

p = c \cdot q

En este caso, decimos que la división es exacta. Sin embargo, si no podemos encontrar este número, buscamos un número tal que al multiplicarlo por q, el resultado sea mayor de los enteros menores que p, es decir, un número entero c tal que

p = c \cdot q + r

Donde 0 < r < a. Esta propiedad se conoce como el algoritmo de la división. Al número r lo llamaremos el resto de la división y se puede calcular como r = p - c \cdot q. Además notemos que si la división es exacta, entonces el resto de la división es igual a cero, es decir, r=0. Veamos en los siguientes ejemplos como expresar algunas divisiones usando el algoritmo de la división.

Anuncios

Ejemplos

Ejemplo 9

Si dividimos 8 entre 4, entonces buscamos un número entero tal que al multiplicarlo por 4 el resultado sea o que está cerca de 8, particularmente el número que estamos buscando es 2 pues 2 \cdot 4 = 8 y de acuerdo con el algoritmo de la división, el resto es igual a 8 - 8 = 0, esto lo expresamos de la siguiente forma:

División de Números Enteros | totumat.com

Por lo tanto decimos que 8 = 2 \cdot 4 + 0. En este caso el resto es igual a cero, por lo tanto, decimos que la división es exacta.

Ejemplo 10

Si dividimos 13 entre 5, entonces buscamos un número entero tal que al multiplicarlo por 5 el resultado sea o que está cerca de 13, particularmente el número que estamos buscando es 2 pues 2 \cdot 5 = 10 y de acuerdo con el algoritmo de la división, el resto es igual a 13 - 10 = 3, esto lo expresamos de la siguiente forma:

División de Números Enteros | totumat.com

Por lo tanto decimos que 13 = 2 \cdot 5 + 3. En este caso el resto es distinto de cero, por lo tanto, decimos que la división no es exacta.

Ejemplo 11

Si dividimos 21 entre 4, entonces buscamos un número entero tal que al multiplicarlo por 4 el resultado sea o que está cerca de 21, particularmente el número que estamos buscando es 5 pues 5 \cdot 4 = 20 y de acuerdo con el algoritmo de la división, el resto es igual a 21 - 20 = 1, esto lo expresamos de la siguiente forma:

División de Números Enteros | totumat.com

Por lo tanto decimos que 21 = 5 \cdot 4 + 1. En este caso el resto es distinto de cero, por lo tanto, decimos que la división no es exacta.

Ejemplo 12

Si dividimos 21 entre 7, entonces buscamos un número entero tal que al multiplicarlo por 7 el resultado sea o que está cerca de 21, particularmente el número que estamos buscando es 3 pues 3 \cdot 7 = 21 y de acuerdo con el algoritmo de la división, el resto es igual a 21 - 21 = 1, esto lo expresamos de la siguiente forma:

División de Números Enteros | totumat.com

Por lo tanto decimos que 21 = 3 \cdot 7 + 0. En este caso el resto es igual a cero, por lo tanto, decimos que la división es exacta.


Anuncios

El algoritmo de la división se puede generalizar al operar entre polinomios. De modo que si consideramos P(x) y Q(x) dos polinomios tales que el grado de Q(x) es menor o igual que el grado de P(x), al dividir P(x) entre Q(x), buscamos un polinomio tal que al multiplicarlo por Q(x) el resultado sea exactamente P(x), es decir, un polinomio C(x) tal que

P(x) = C(x) \cdot Q(x)

En este caso, decimos que la división es exacta. Sin embargo, si no podemos encontrar este polinomio, buscamos un polinomio tal que al multiplicarlo por Q(x) el polinomio resultante tenga el mismo grado que P(x) y que el grado del polinomio que define el resto sea menor que el grado de Q(x), es decir, un polinomio C(x) tal que

P(x) = C(x) \cdot Q(x) + R(x)

Donde gr\left( R(x) \right) < gr\left( Q(x) \right) \leq gr\left( P(x) \right). Además notemos que si la división es exacta, entonces el resto de la división es igual a cero, es decir, R(x) = 0. Veamos en los siguientes ejemplos el método para dividir polinomios y además, como expresar estas divisiones usando el algoritmo de la división.

Anuncios

Ejemplos

Ejemplo 13

Si dividimos el polinomio P(x) = x^2 + x + 3 entre el polinomio Q(x) = x + 1, entonces los escribimos de la siguiente forma

División de Polinomios | totumat.com

El siguiente paso será buscar un polinomio tal que al multiplicarlo por el primer sumando del polinomio Q(x) = x + 1 el resultado sea exactamente igual al primer sumando del polinomio P(x) = x^2 + x + 3, en este caso el polinomio que estamos buscando es x y lo escribimos de la siguiente forma

División de Polinomios | totumat.com

El siguiente paso será multiplicar el polinomio Q(x) = x + 1 por x y el resultado se lo restamos al polinomio P(x) = x^2 + x + 3 de la siguiente forma

División de Polinomios | totumat.com

Notamos que el grado del polinomio en el resto es menor que el grado del polinomio Q(x), Por lo tanto, concluimos que

x^2 + x + 3 = x \cdot (x+1) + 3

Ejemplo 14

Si dividimos el polinomio P(x) = 8x^3 - 6x^2 - 2 entre el polinomio Q(x) = 2x^2 + x - 1, entonces completamos los polinomios incompletos y los escribimos de la siguiente forma

División de Polinomios | totumat.com

El siguiente paso será buscar un polinomio tal que al multiplicarlo por el primer sumando del polinomio Q(x) = 2x^2 + x - 1 el resultado sea exactamente igual al primer sumando del polinomio P(x) = 8x^3 - 6x^2 - 2, en este caso el polinomio que estamos buscando es 4x y lo escribimos de la siguiente forma

División de Polinomios | totumat.com

El siguiente paso será multiplicar el polinomio Q(x) = 2x^2 + x - 1 por x y el resultado se lo restamos al polinomio P(x) = 8x^3 - 6x^2 - 2 de la siguiente forma

División de Polinomios | totumat.com

Notamos que el grado del polinomio en el resto es menor que el grado del polinomio Q(x), por lo tanto, el siguiente paso será buscar un polinomio tal que al multiplicarlo por el primer sumando del polinomio Q(x) = 2x^2 + x - 1 el resultado sea exactamente igual al primer sumando del polinomio en el resto, de decir, el polinomio -10x^2 + 4x.

En este caso el polinomio que estamos buscando es -5 y lo multiplicamos por el polinomio Q(x) = 2x^2 + x - 1; el resultado se lo restamos al polinomio -10x^2 + 4x de la siguiente forma

División de Polinomios | totumat.com

Notamos que el grado del polinomio en el resto es menor que el grado del polinomio Q(x), Por lo tanto, concluimos que

8x^3 - 6x^2 - 2 = (4x-5) \cdot (2x^2 + x - 1) + 9x-7


Bosquejo de Polinomios

Si se sabe interpretar de forma correcta la información que se obtiene de las derivadas de una función se puede hacer bosquejo de un polinomio sin necesidad de extenderse mucho en los cálculos, sin embargo, definamos una serie de pasos que facilite el flujo de la información que vamos obteniendo del polinomio para poder apreciar su comportamiento general. Si P(x) un polinomio, entonces

  1. Calculamos los puntos de corte con los ejes y estudiamos su positividad (intervalos en los que es positiva o negativa).
  2. Calculamos los puntos críticos y determinamos su monotonía (intervalos en los que crece o decrece).
  3. Calculamos los puntos de inflexión y determinamos su concavidad (intervalos en los que es convexa o cóncava).
  4. Calculamos las imágenes de los puntos de los puntos críticos y de inflexión.
  5. Esbozar la gráfica.

De esta forma, aunque es un proceso extenso, se observa con claridad el comportamiento de la función en cada intervalo de la recta real estudiando la función, su primera derivada y su segunda derivada. Veamos con algunos ejemplos como hacer estos bosquejos.

También pudiera interesarte

Anuncios

Ejemplos

Ejemplo 1

Haga un bosquejo del polinomio P(x) = x^2 + 5x +6

Primer Paso: Puntos de Corte y Positividad.

Para determinar el punto de corte del polinomio con el Eje Y, calculamos el valor del polinomio cuando x=0, esto es

P(0) = (0)^2 + 5(0) +6 = 6

Para determinar los puntos de corte del polinomio con el Eje X, calculamos el valor de la variable x cuando P(x)=0, esto es,

x^2 + 5x +6 = 0 \Longrightarrow (x+2)(x+3)=0

Entonces, los puntos de corte del polinomio con el Eje X son x=-2 y x=-3. Así, podemos estudiar la positividad del polinomio haciendo una tabla de análisis de signo:

De esta forma, concluimos que el polinomio P(x)

  • Está por encima del Eje X en los intervalos (-\infty,-3) y (-2,+\infty).
  • Está por debajo del Eje X en el intervalo (-3,-2).

Segundo Paso: Puntos Críticos y Monotonía.

Para determinar los puntos críticos del polinomio P(x) calculamos su primera derivada y obtenemos P'(x) = 2x+5. Calculamos los valores para los cuales P'(x)=0, esto es,

2x+5 = 0 \Longrightarrow x = -\frac{5}{2}

Entonces, el punto crítico del polinomio es x=-\frac{5}{2}. Así, podemos estudiar la monotonía del polinomio haciendo una tabla de análisis de signo:

De esta forma, concluimos que el polinomio P(x)

  • Es decreciente en el intervalo (-\infty,-\frac{5}{2}),
  • Es creciente en el intervalo (-\frac{5}{2},+\infty).
  • Alcanza un mínimo local en x=-\frac{5}{2}.
Anuncios

Tercer Paso: Puntos de Inflexión y Concavidad.

Para determinar los puntos de inflexión del polinomio P(x) calculamos su segunda derivada y obtenemos P''(x) = 2. Concluyendo inmediatamente que nunca es igual a cero, entonces no tiene puntos de inflexión. Aunque la conclusión es clara, haremos una tabla de análisis de signo para ilustrar lo que ocurre.

De esta forma, concluimos que el polinomio P(x)

  • Es convexo en todo su dominio.

Cuarto Paso: Imágenes.

  • P(-\frac{5}{2}) =\left( -\frac{5}{2} \right)^2 + 5 \left( -\frac{5}{2} \right) + 6 = -\frac{1}{4} = -0.25

Quinto Paso: Graficar.

Puntos de Corte.

Puntos Críticos.

Anuncios

Ejemplo 2

Haga un bosquejo del polinomio P(x) = x^3 - 2x^2 -x +2

Primer Paso: Puntos de Corte y Positividad.

Para determinar el punto de corte del polinomio con el Eje Y, calculamos el valor del polinomio cuando x=0, esto es

P(0) = (0)^3 - 2(0)^2 -(0) +2 = 2

Para determinar los puntos de corte del polinomio con el Eje X, calculamos el valor de la variable x cuando P(x)=0, esto es,

x^3 - 2x^2 -x +2 = 0

Considerando que este polinomio es de grado tres, el método que usaremos para calcular sus raíces será el Método de Ruffini. Entonces, consideramos sus coeficientes de la siguiente manera

Entonces, los puntos de corte del polinomio con el Eje X son x=1, x=-1 y x=2. Así, podemos factorizar el polinomio como P(x)=(x-1)(x+1)(x-2) y estudiar su positividad haciendo una tabla de análisis de signo:

De esta forma, concluimos que el polinomio P(x)

  • Está por encima del Eje X en los intervalos (-1,1) y (2,+\infty)
  • Está por debajo del Eje X en los intervalos (-\infty,-1) y (1,2).

Segundo Paso: Puntos Críticos y Monotonía.

Para determinar los puntos críticos del polinomio P(x) calculamos su primera derivada y obtenemos P'(x) = 3x^2 - 4x -1. Calculamos los valores para los cuales P'(x)=0. Considerando que este polinomio es de segundo grado, el método que usaremos para calcular sus raíces será el Método del Discriminante.

Identificamos los coeficientes del polinomio como a=3, b=-4 y c=-1 y aplicamos la fórmula del discriminante

x = \dfrac{-b \pm \sqrt{b^2-4 \cdot a \cdot c}}{2 \cdot a}

= \dfrac{-(-4) \pm \sqrt{(-4)^2-4 \cdot 3 \cdot (-1)}}{2 \cdot 3}

= \dfrac{4 \pm \sqrt{16+12}}{6}

= \dfrac{4 \pm \sqrt{28}}{6}

= \dfrac{2 \pm \sqrt{7}}{3}

x_1 = \dfrac{2 + \sqrt{7}}{3} \approx 1.54858

x_2 = \dfrac{2 - \sqrt{7}}{3} \approx -0.21525

Entonces, los puntos críticos del polinomio son x=\dfrac{2 + \sqrt{7}}{3} y x=\dfrac{2 - \sqrt{7}}{3}. Así, podemos factorizar la primera derivada del polinomio como P'(x)=3\left( x - \frac{2 + \sqrt{7}}{3} \right)\left( x + \frac{2 + \sqrt{7}}{3} \right) y estudiar la monotonía del polinomio haciendo una tabla de análisis de signo:

De esta forma, concluimos que el polinomio P(x)

  • Es creciente en los intervalos \left(-\infty,\frac{2 - \sqrt{7}}{3}\right) y \left(\frac{2 + \sqrt{7}}{3},+\infty\right).
  • Es decreciente en el intervalo \left(\frac{2 - \sqrt{7}}{3},\frac{2 + \sqrt{7}}{3}\right).
  • Alcanza un máximo local en x=\frac{2 - \sqrt{7}}{3}.
  • Alcanza un mínimo local en x=\frac{2 + \sqrt{7}}{3}.
Anuncios

Tercer Paso: Puntos de Inflexión y Concavidad.

Para determinar los puntos de inflexión del polinomio P(x) calculamos su segunda derivada y obtenemos P''(x) = 6x-4. Calculamos los valores para los cuales P''(x)=0. Considerando que este polinomio lineal, el método que usaremos para calcular sus raíces será un simple despeje de la siguiente manera

6x-4 = 0 \Longrightarrow 6x = 4 \Longrightarrow x = \frac{4}{6} \Longrightarrow x = \frac{2}{3}

Entonces nuestro posible punto de inflexión es x=\frac{2}{3}, y estudiamos la concavidad del polinomio haciendo una tabla de análisis de signo:

De esta forma, concluimos que el polinomio P(x)

  • Es cóncavo en el intervalo (-\infty,\frac{2}{3}).
  • Es convexo en el intervalo (\frac{2}{3},+\infty).
  • Alcanza un punto de inflexión en x=\frac{2}{3}.

Cuarto Paso: Imágenes.

  • P\left(\frac{2 + \sqrt{7}}{3} \right) = \left(\frac{2 + \sqrt{7}}{3} \right)^3 - 2\left(\frac{2 + \sqrt{7}}{3} \right)^2 -\left(\frac{2 + \sqrt{7}}{3} \right) +2 \approx -0.63113
  • P\left(\frac{2 - \sqrt{7}}{3} \right) = \left(\frac{2 - \sqrt{7}}{3} \right)^3 - 2\left(\frac{2 - \sqrt{7}}{3} \right)^2 -\left(\frac{2 - \sqrt{7}}{3} \right) +2 \approx 2.11261
  • P\left(\frac{2}{3} \right) = \left(\frac{2}{3} \right)^3 - 2\left(\frac{2}{3} \right)^2 -\left(\frac{2}{3} \right) +2 \approx 0.740741

Quinto Paso: Graficar.

Puntos de Corte.

Puntos Críticos.

Puntos de Inflexión.

Tabla de Signos

Para calcular la solución de una inecuación lineal basta con seguir los pasos usados para calcular la solución de una ecuación lineal, para calcular la solución de una inecuación cuadrática el proceso no resulta tan trivial pues el producto de los factores involucrados nos invita a estudiar uno a uno los casos que se presentan. De esta forma, podemos notar que a medida que los polinomios involucrados en la inecuación tienen mayor grado, son más los casos que debemos considerar. Es por esto que debemos considerar un método que nos facilite las cuentas.

También pudiera interesarte

Anuncios

Consideremos inecuaciones en las que el mayor exponente involucrado es mayor que 2, es decir, aquellas inecuaciones que se expresan de la siguiente forma:

a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0 > 0

Donde «>» representa ecualquier desigualdad >, \geq, < ó \leq; a_n, a_{n-1}, \ldots, a_2, a_1, a_0 son números reales y n>2.

Es posible determinar los valores que satisfacen la desigualdad factorizando el polinomio P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0 tal como lo hicimos con las inecuaciones cuadráticas, sin embargo, este método puede ser tedioso debido a todos los casos que hay que considerar, es por esto que desarrollaremos un método más sofisticado que nos permitirá estudiar donde el polinomio P(X) es positivo o negativo, a esto le llamaremos estudiar el signo del polinomio.

En los siguientes ejemplos usaremos una tabla de análisis de signos o simplemente tabla de signos (vulgarmente conocida como el método del cementerio o método de las cruces) está basada en el Teorema de Sturm y en ella veremos como se comporta el signo del polinomio P(x) en intervalos muy particulares definidos por sus raíces.

Ejemplo 1

Calcule los valores de x que satisfacen la siguiente inecuación: x^3 + 2x^2 - x - 2 > 0.

Al considerar esta inecuación, debemos terminar cuales son los valores de x para los cuales el polinomio P(x) = x^3 + 2x^2 - x - 2 es positivo. Para esto calculemos primero sus raíces usando el Método de Ruffini.

Método de Ruffini | totumat.com

Ya que las raíces de este polinomio son x_1=1, x_2=-1 y x_3=-2; entonces podemos factorizarlo como P(x) = (x-1)(x+1)(x+2) y nuestro propósito será el de determinar el signo de cada uno de los factores involucrados entre los intervalos (-\infty,-2), (-2,-1), (-1,1) y (1,+\infty). Para esto ubicamos cada una de las raíces del polinomio, -\infty y +\infty en la recta real de la siguiente manera:

Construcción de una Tabla de Signos | totumat.com
Intervalos

Debajo de cada una de las raíces del polinomio, -\infty y +\infty se trazan rectas verticales; y además se trazan cuatro renglones horizontales. Obteniendo una tabla de la siguiente forma:

Construcción de una Tabla de Signos | totumat.com

Estos renglones se reparten uno para cada factor involucrado (x-1), (x+1), (x+2) y uno para el polinomio P(x). Los ubicamos así:

Construcción de una Tabla de Signos | totumat.com

Ubicamos en la tabla valor de x para el cual se anula el primer factor, es decir, el valor de x para el cual x-1 = 0. Este valor es 1 y concluimos lo siguiente: Para los valores de x menores que 1, tenemos que x-1 es negativo y para los valores de x mayores que 1, tenemos que x-1 es positivo (esto se puede verificar fácilmente hallando la solución de las inecuaciones x-1 < 0 y x-1 > 0). Esto lo expresamos en nuestra tabla con los signos + y – como sigue

Construcción de una Tabla de Signos | totumat.com

Ubicamos en la tabla valor de x para el cual se anula el segundo factor, es decir, el valor de x para el cual x+1 = 0. Este valor es -1 y concluimos lo siguiente: Para los valores de x menores que -1, tenemos que x+1 es negativo y para los valores de x mayores que -1, tenemos que x+1 es positivo (esto se puede verificar fácilmente hallando la solución de las inecuaciones x+1 < 0 y x+1 > 0). Esto lo expresamos en nuestra tabla con los signos + y – como sigue

Construcción de una Tabla de Signos | totumat.com

Ubicamos en la tabla valor de x para el cual se anula el tercer factor, es decir, el valor de x para el cual x+2 = 0. Este valor es -2 y concluimos lo siguiente: Para los valores de x menores que -2, tenemos que x+2 es negativo y para los valores de x mayores que -2 tenemos que x+2 es positivo (esto se puede verificar fácilmente hallando la solución de las inecuaciones x+2 < 0 y x+2 > 0). Esto lo expresamos en nuestra tabla con los signos + y – como sigue

Construcción de una Tabla de Signos | totumat.com

Para cada intervalo (-\infty,-2), (-2,-1), (-1,1) y (1,+\infty) el signo de P(X) vendrá dado por el producto de los factores que lo definen. De esta forma, multiplicamos los signos de los factores de cada columna:

  • En la primera columna (-) \cdot (-) \cdot (-)=-
  • En la segunda columna (-) \cdot (-) \cdot (+)=+
  • En la tercera columna (-) \cdot (+) \cdot (+)=-
  • En la cuarta columna (+) \cdot (+) \cdot (+)=+

Por lo tanto, nuestra Tabla de Análisis de Signos queda expresada de la siguiente forma:

Construcción de una Tabla de Signos | totumat.com

Finalmente, concluimos que la desigualdad planteada en x^3 + 2x^2 - x - 2 > 0 se satisface para los valores de x que pertenecen a los intervalos (-2,-1) ó (1,+\infty), entonces la solución general de la ecuación es:

(-2,-1) \cup (1,+\infty)

Anuncios

Ejemplo 2

Calcule los valores de x que satisfacen la siguiente inecuación: -2x^3 - 10x^2 + 4x + 48 \leq 0.

Al considerar esta inecuación, debemos terminar cuales son los valores de x para los cuales el polinomio P(x) = -2x^3 - 10x^2 + 4x + 48 es negativo o igual a cero. Para esto calculemos sus raíces usando el Método de Ruffini, primero sacamos factor común -2, entonces P(x) = -2(x^3 + 5x^2 - 2x - 24)

Método de Ruffini | totumat.com

Ya que las raíces de este polinomio son x_1=2, x_2=-3 y x_3=-4; entonces podemos factorizarlo como P(x) = -2(x-2)(x+3)(x+4) y nuestro propósito será el de determinar el signo de cada uno de los factores involucrados entre los intervalos (-\infty,-4], [-4,-3], [-3,2] y [2,+\infty]. Tomando todas las consideraciones del ejemplo anterior y además, tomando en cuenta que el factor -2 es un número negativo constante, nuestra tabla de análisis de signo quedará expresada como

Construcción de una Tabla de Signos | totumat.com

Finalmente, concluimos que la desigualdad planteada en la inecuación -2x^3 - 10x^2 + 4x + 48 \leq 0 se satisface para los valores de x que pertenecen a los intervalos [-4,-3] ó [2,+\infty), entonces la solución general de la ecuación es:

[-4,-3] \cup [2,+\infty)


Cuando le llamas «Tabla de Análisis de Signo»