Transformación de funciones

  1. Traslación de Funciones
    1. Traslaciones en el Eje Y
    2. Traslaciones en el Eje X
  2. Reflexión de Funciones
    1. Respecto al Eje X
    2. Respecto al Eje Y
  3. Valor Absoluto de una Función
  4. Contracción y expansión de Funciones
    1. Respecto al Eje X
    2. Respecto al Eje Y

Las funciones elementales tienen variaciones que vienen dadas cuando se altera la expresión que las define al sumar, restar, multiplicar o dividir por un escalar.

Para entender las transformaciones de funciones o alteraciones que podemos efectuar sobre una función elemental, dibujemos primero el bosquejo de la gráfica de una función a la cual le podamos efectuar las transformaciones. Consideremos f(x) una función que pasa por el origen, es decir, tal que f(0)=0 y sea a > 0 un número real. Supongamos que la gráfica de la función f(x) es la siguiente:

También pudiera interesarte

Traslación de Funciones

Traslaciones en el Eje Y

Si consideramos la función f(x) + a, estamos sumando a a cada imagen de la función, gráficamente estamos trasladando la función f(x) en a unidades hacia arriba en el Eje Y de la siguiente forma:

Si consideramos la función f(x) - a, estamos restando a a cada imagen de la función, gráficamente estamos trasladando la función f(x) en a unidades hacia abajo en el Eje Y de la siguiente forma:

Notemos que hemos sumado a fuera de la función, es decir, hemos sumando a a la función como un todo. Es por esto que la traslación se ha dado en el Eje Y. Básicamente, lo que está ocurriendo es que si y=f(x) estamos graficando y \pm a. A continuación veremos una traslación que altera la imagen de la función si no las pre-imágenes de esta, es decir, los elementos del dominio.

Traslaciones en el Eje X

Para entender este tipo de traslaciones debemos tener claro el concepto de argumento de la función. Al considerar una función, cada elemento de su dominio será una pre-imagen de ésta y el argumento de la función será la expresión que define estas pre-imágenes. Veamos algunos ejemplos para entender mejor esta idea:

  • Si f(x)=x, la expresión que define el argumento de la función es x.
  • Si f(x)=x^2, estamos considerando la función cuadrática y la expresión que define el argumento es x.
  • Si f(x)=(x+1)^2, la expresión que define el argumento de esta función cuadrática es x+1. Hemos restado 1 al argumento de la función x^2.
  • Si f(x)=\sqrt{x+3}, la expresión que define el argumento de la función es x+3. Hemos sumado 3 al argumento de la función \sqrt{x}.
  • Si f(x)=\dfrac{1}{x-2}, la expresión que define el argumento de la función es x-2. Hemos restado 2 al argumento de la función \frac{1}{x}.
  • Si f(x)=\text{\rm \Large e}^{2x+7}, la expresión que define el argumento de la función es 2x+7. Hemos multiplicado por 2 y sumado 7 en el argumento de la función \text{\rm \Large e}^{x}.
  • Si f(x)=\ln(x-8), la expresión que define el argumento de la función es x-8. Hemos restado 8 al argumento de la función \ln(x).

Si consideramos la función f(x+a), estamos sumando a a cada pre-imagen de la función. Recordando que la función se anula en cero, es decir, f(0)=0. Debemos tomar en cuenta que

f(x+a)=0 \Rightarrow x + a = 0 \Rightarrow x=-a

gráficamente estamos trasladando la función f(x) hasta el punto donde se anula el argumento, esto es, en -a. Por lo que que en este caso particular, la función se traslada en a unidades hacia la izquierda en el Eje X de la siguiente forma:

Si consideramos la función f(x-a), estamos restando a a cada pre-imagen de la función. Recordando que la función se anula en cero, es decir, f(0)=0. Debemos tomar en cuenta que

f(x-a)=0 \Rightarrow x - a = 0 \Rightarrow x=a

gráficamente estamos trasladando la función f(x) hasta el punto donde se anula el argumento, esto es, en a. Por lo que que en este caso particular, la función se traslada en a unidades hacia la derecha en el Eje X de la siguiente forma:



Reflexión de Funciones

Respecto al Eje X

Si consideramos la función -f(x), estamos multiplicando por -1 a cada imagen de la función. Por lo tanto, todas las imágenes positivas de la función pasan a ser negativas y todas las imágenes negativas de la función pasan a ser positivas, gráficamente todos los elementos que están por encima del Eje X pasan a estar por debajo y todos los elementos que están por debajo del Eje X pasan a estar por encima de la siguiente forma:

Respecto al Eje Y

Si consideramos la función f(-x), estamos multiplicando por -1 a cada imagen de la función. Por lo tanto, todas las pre-imágenes positivas de la función pasan a ser negativas y todas las pre-imágenes negativas de la función pasan a ser positivas, gráficamente todos los elementos que están a la izquierda del Eje Y pasan a estar a la derecha y todos los elementos que están a la izquierda del Eje Y pasan a estar a la izquierda de la siguiente forma:



Valor Absoluto de una Función

Si consideramos el Valor Absoluto la función f(x), es decir, |f(x)|, debemos tomar en cuenta que

|f(x)| = f(x) \text{ si } f(x) > 0
ó
|f(x)| = -f(x) \text{ si } f(x) < 0

Por lo tanto, todas las imágenes positivas de la función permanecen positivas y todas las imágenes negativas de la función pasan a ser positivas, gráficamente todos los elementos que están por encima del Eje X permanecen inalterados y todos los elementos que están por debajo del Eje X pasan a estar por encima de la siguiente forma:



Contracción y expansión de Funciones

Al considerar funciones, definimos un escalar simplemente como un número constante, que tal como lo dice su nombre, altera la escala de estas.

Respecto al Eje X

Si a>1, consideramos la función a \cdot f(x), estamos multiplicando por a a cada imagen de la función. Por lo tanto, esta crecerá a una velocidad a veces más rápido, haciendo que se expanda la función f(x) verticalmente de la siguiente forma:

Si a<1, consideramos la función a \cdot f(x), estamos multiplicando por a a cada imagen de la función. Por lo tanto, esta crecerá a una velocidad a veces más lento, haciendo que se contraiga la función f(x) verticalmente de la siguiente forma:

Respecto al Eje Y

Si a<1, consideramos la función f(a \cdot x), estamos multiplicando por a a cada pre-imagen de la función. Por lo tanto, esta alcanzará una imagen después de lo que la alcanzaba, haciendo que se expanda la función f(x) horizontalmente de la siguiente forma:

Si a>1, consideramos la función f(a \cdot x), estamos multiplicando por a a cada pre-imagen de la función. Por lo tanto, esta alcanzará una imagen antes de lo que la alcanzaba, haciendo que se contraiga la función f(x) horizontalmente de la siguiente forma:


Inecuaciones con Valor Absoluto, caso: «menor que»

  1. Caso: «Menor que»
    1. Ejemplos
      1. Ejemplo 1
      2. Ejemplo 2
      3. Ejemplo 3: Valor absoluto menor que un número negativo
      4. Ejemplo 4: Variables en ambos lados de la inecuación
      5. Ejemplo 5: Variables en ambos lados de la inecuación
      6. Ejemplo 6: Se anula la variable en la inecuación
      7. Ejemplo 7: Se anula la variable en la inecuación

Caso: «Menor que»

Al definir el valor absoluto de un número real, hemos visto que es igual a la distancia entre dicho número y el número cero. Partiendo de esta definición, pudimos definir ecuaciones que involucran el valor absoluto de una variable.

De forma que si queremos determinar todos los números que cuya distancia entre cuya distancia a cero es igual a 4, entonces planteamos la siguiente ecuación: |x| = 4 y finalmente, determinamos que estos números son 4 y -4.

Pero, ¿y si queremos determinar todos los números cuya distancia a cero es menor que 4? Para dar respuesta a esta pregunta, podemos plantear la siguiente inecuación:

|x| < 4

También pudiera interesarte

Entonces, ¿qué números satisfacen dicha inecuación? Podemos tantear las respuestas, por ejemplo: el número 5 no la satisface, pues |5|=5 y 5 no es menor que 4. Así podemos probar con los números 6, 7 u 8 pero ninguno de estos números satisface la inecuación.

Sin embargo, si consideramos 3, 2, 1 o 0 podemos ver que estos números sí satisfacen la inecuación y en general pudiéramos decir que cualquier número menor que 4 satisface la inecuación pero, ¿será correcta esta afirmación?

La respuesta es no, pues si consideramos -5, -6 o -8 entonces estos números tampoco satisfacen la inecuación. Sin embargo, si consideramos -3, -2 o -1, estos números sí satisfacen la inecuación.

Razonando de esta forma, podemos concluir que cualquier número que sea menor que 4 y mayor que -4 al mismo tiempo, satisface la inecuación |x| < 4. Gráficamente, podemos representar todos estos números en la recta real de la siguiente forma:


Nota: al representar gráficamente los números menores que 4, los hemos dibujado de color azul con sentido noreste. Por otra parte, al representar gráficamente los números mayores que -4, los hemos dibujado de color azul con sentido noroeste.

De esta forma, podemos distinguir con claridad cuál es la intersección entre estos dos intervalos.


En general, diremos que al considerar una inecuación de la forma |x| < a, donde a es un número real; la solución viene dada por todos los números que son menores que a y todos los números que son mayores que a al mismo tiempo, formalmente se puede calcular la solución planteando la siguiente equivalencia:

\Large \left| x \right| < a \Longleftrightarrow \left\{ {\begin{array}{l} x < a \\ \text{y} \\ x > -a \end{array} } \right.



Ejemplos

Ejemplo 1

Calcule los valores de x que satisfacen la siguiente desigualdad

|x+2|<2

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es menor que la expresión que está en el lado derecho de la inecuación.
  • Cuando la variable que está dentro del valor absoluto es mayor que el opuesto aditivo de la expresión que está en el lado derecho de la inecuación.

De esta forma, planteamos dos ecuaciones:

 \left\{ {\begin{array}{l} x+2 < 2 \\ \text{y} \\ x+2 > -2 \end{array} } \right.

Entonces, calculamos cada una de las ecuaciones planteadas:

Solución (1):

x + 2 < 2

\Rightarrow x < 2 - 2

\Rightarrow x < 0

La solución de esta inecuación viene dada por todos los valores menores que 0, formalmente,

(-\infty,0)

Solución (2):

x + 3 < -1

\Rightarrow x < -1 - 3

\Rightarrow x < - 4

La solución de esta inecuación viene dada por todos los valores mayores que -4, formalmente,

(-4,+\infty)

Finalmente tomamos en cuenta que la solución general viene dada por todos los números que cumplen con la solución (1) y todos los números que cumplen con la solución (2) al mismo tiempo. Por lo tanto, consideraremos la intersección de la solución (1) y (2).

Solución General:
(-\infty,0) \cap (-4,+\infty) = (-4,0)



Ejemplo 2

Calcule los valores de x que satisfacen la siguiente desigualdad

|3x-3| \leq 6

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es menor o igual que la expresión que está en el lado derecho de la inecuación.
  • Cuando la variable que está dentro del valor absoluto es mayor o igual que el opuesto aditivo de la expresión que está en el lado derecho de la inecuación.

De esta forma, planteamos dos ecuaciones:

 \left\{ {\begin{array}{l} 3x-3 \leq 6 \\ \text{y} \\ 3x-3 \geq -6 \end{array} } \right.

Entonces, calculamos cada una de las ecuaciones planteadas:

Solución (1):

3x-3 \leq 6

\Rightarrow 3x \leq 6+3

\Rightarrow 3x \leq 9

\Rightarrow x \leq \frac{9}{3}

\Rightarrow x \leq 3

La solución de esta inecuación viene dada por todos los valores menores o iguales que 3, formalmente,

(-\infty,3]

Solución (2):

3x-3 \geq -6

\Rightarrow 3x \geq -6+3

\Rightarrow 3x \geq -3

\Rightarrow x \geq -\frac{3}{3}

\Rightarrow x \geq -1

La solución de esta inecuación viene dada por todos los valores mayores o iguales que -1, formalmente,

(-1,+\infty)

Finalmente tomamos en cuenta que la solución general viene dada por todos los números que cumplen con la solución (1) y todos los números que cumplen con la solución (2) al mismo tiempo. Por lo tanto, consideraremos la intersección de la solución (1) y (2).

Solución General:
(-\infty,3] \cap [-1,+\infty) = [-1,3]



Ejemplo 3: Valor absoluto menor que un número negativo

Calcule los valores de x que satisfacen la desigualdad

|7x-11| < - 1

Al considerar esta inecuación, no es necesario hacer el procedimiento que hemos visto en los primeros ejemplos pues recordando que el valor absoluto de un número siempre es positivo, podemos darnos cuenta que sea cual sea el valor de x el valor absoluto |7x-11| nunca será menor que -1. Básicamente la pregunta es: ¿cuándo un número positivo es menor que un número negativo?

La respuesta es: Nunca. Por lo tanto, la solución de esta inecuación viene dada por el conjunto vacío:

\emptyset


Ejemplo 4: Variables en ambos lados de la inecuación

Calcule los valores de x que satisfacen la siguiente desigualdad

|2x-1| < -x+3

Lo primero que debemos notar al calcular la solución de esta inecuación, es que en ambos lados de la desigualdad hay una incógnita. Así que al final debemos tener evaluar para qué valores, esta desigualdad tiene sentido.

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es menor que la expresión que está en el lado derecho de la inecuación.
  • Cuando la variable que está dentro del valor absoluto es mayor que el opuesto aditivo de la expresión que está en el lado derecho de la inecuación.

De esta forma, planteamos dos ecuaciones:

 \left\{ {\begin{array}{l} 2x-1 < -x+3 \\ \text{y} \\ 2x-1 > -(-x+3) \end{array} } \right.

Entonces, calculamos cada una de las ecuaciones planteadas:

Solución (1):

2x-1 < -x+3

\Rightarrow 2x < -x+3+1

\Rightarrow 2x < -x+4

\Rightarrow 2x + x < 4

\Rightarrow 3x  < 4

\Rightarrow x  < \frac{4}{3}

La solución de esta inecuación viene dada por todos los valores menores que \frac{4}{3}, formalmente,

(-\infty,\frac{4}{3})

Solución (2):

\Rightarrow 2x-1 > -(-x+3)

\Rightarrow 2x > x-3+1

\Rightarrow 2x > x-2

\Rightarrow 2x - x > -2

\Rightarrow x > -2

La solución de esta inecuación viene dada por todos los valores mayores que -2, formalmente,

(-2,+\infty)

Finalmente tomamos en cuenta que la solución general viene dada por todos los números que cumplen con la solución (1) y todos los números que cumplen con la solución (2) al mismo tiempo. Por lo tanto, consideraremos la intersección de la solución (1) y (2).

Solución Parcial:
(-\infty,\frac{4}{3}) \cap (-2,+\infty)

Para determinar la solución general, debemos verificar los valores de x para los cuales la expresión -x+3 es negativa, pues para estos valores, la desigualdad |2x-1| < -x+3 nunca se cumple. Entonces, consideramos la siguiente condición sobre la variable x

-x+3 < 0 \Rightarrow -x < -3 \Rightarrow x > 3 \Rightarrow x \in (3,+\infty)

Finalmente, la solución general se define como la solución parcial excluyendo la condición, es decir,

Solución General:
(-2,+\infty) / (3,+\infty) = (-2,+\infty)



Ejemplo 5: Variables en ambos lados de la inecuación

Calcule los valores de x que satisfacen la siguiente desigualdad

|-3x+2| \leq 4x+1

Lo primero que debemos notar al calcular la solución de esta inecuación, es que en ambos lados de la desigualdad hay una incógnita. Así que al final debemos tener evaluar para qué valores, esta desigualdad tiene sentido.

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es menor que la expresión que está en el lado derecho de la inecuación.
  • Cuando la variable que está dentro del valor absoluto es mayor que el opuesto aditivo de la expresión que está en el lado derecho de la inecuación.

De esta forma, planteamos dos ecuaciones:

 \left\{ {\begin{array}{l} -3x+2 \leq 4x+1 \\ \text{y} \\ -3x+2 \geq -(4x+1) \end{array} } \right.

Entonces, calculamos cada una de las ecuaciones planteadas:

Solución (1):

-3x+2 \leq 4x+1

\Rightarrow -3x \leq 4x+1-2

\Rightarrow -3x \leq 4x-1

\Rightarrow -3x -4x \leq -1

\Rightarrow -7x \leq -1

\Rightarrow x \geq \frac{-1}{-7}

\Rightarrow x \geq \frac{1}{7}

La solución de esta inecuación viene dada por todos los valores mayores o iguales que \frac{1}{7}, formalmente,

[\frac{1}{7},+\infty)

Solución (2):

\Rightarrow -3x+2 \geq -(4x+1)

\Rightarrow -3x+2 \geq -4x-1

\Rightarrow -3x \geq -4x-1-2

\Rightarrow -3x \geq -4x-3

\Rightarrow -3x +4x \geq -3

\Rightarrow x \geq -3

La solución de esta inecuación viene dada por todos los valores mayores o iguales que -3, formalmente,

[-3,+\infty)

Finalmente tomamos en cuenta que la solución general viene dada por todos los números que cumplen con la solución (1) y todos los números que cumplen con la solución (2) al mismo tiempo. Por lo tanto, consideraremos la intersección de la solución (1) y (2).

Solución Parcial:
[-3,+\infty) \cap [\frac{1}{7},+\infty)

Para determinar la solución general, debemos verificar los valores de x para los cuales la expresión 4x+1 es negativa, pues para estos valores, la desigualdad |-3x+2| \leq 4x+1 nunca se cumple. Entonces, consideramos la siguiente condición sobre la variable x

4x+1 < 0 \Rightarrow 4x<-1 \Rightarrow x < -\frac{1}{4} \Rightarrow x \in \left( -\infty , -\frac{1}{4} \right)

Finalmente, la solución general se define como la solución parcial excluyendo la condición, es decir,

Solución General:
[\frac{1}{7},+\infty) / \left( -\infty , -\frac{1}{4} \right) = [\frac{1}{7},+\infty)



Ejemplo 6: Se anula la variable en la inecuación

Calcule los valores de x que satisfacen la siguiente desigualdad

|x-2| \leq x+4

Lo primero que debemos notar al calcular la solución de esta inecuación, es que en ambos lados de la desigualdad hay una incógnita. Así que al final debemos tener evaluar para qué valores, esta desigualdad tiene sentido.

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es menor que la expresión que está en el lado derecho de la inecuación.
  • Cuando la variable que está dentro del valor absoluto es mayor que el opuesto aditivo de la expresión que está en el lado derecho de la inecuación.

De esta forma, planteamos dos ecuaciones:

 \left\{ {\begin{array}{l} x-2 \leq x+4 \\ \text{y} \\ x-2 \geq -(x+4) \end{array} } \right.

Entonces, calculamos cada una de las ecuaciones planteadas:

Solución (1):

x-2 \leq x+4

\Rightarrow x \leq x+4+2

\Rightarrow x \leq x+6

\Rightarrow x - x \leq 6

\Rightarrow 0 \leq 6

Podemos notar que se anularon las variables y obtuvimos la desigualdad 0 \leq 6, esta desigualdad es verdadera, por lo tanto, la solución aportada por esta inecuación se representa con todo el conjunto los números reales \mathbb{R} = (-\infty,+\infty) pues cualquier valor de x que la satisface.

Solución (2):

x-2 \geq -(x+4)

\Rightarrow x-2 \geq -x-4

\Rightarrow x \geq -x-4+2

\Rightarrow x \geq -x-2

\Rightarrow x+x \geq -2

\Rightarrow 2x \geq -2

\Rightarrow x \geq -\frac{2}{2}

\Rightarrow x \geq -1

La solución de esta inecuación viene dada por todos los valores mayores o iguales que -1, formalmente,

[-1,+\infty)

Finalmente tomamos en cuenta que la solución general viene dada por todos los números que cumplen con la solución (1) y todos los números que cumplen con la solución (2) al mismo tiempo. Por lo tanto, consideraremos la intersección de la solución (1) y (2).

Solución Parcial:
\mathbb{R} \cap [-1,+\infty) = [-1,+\infty)

Para determinar la solución general, debemos verificar los valores de x para los cuales la expresión x+4 es negativa, pues para estos valores, la desigualdad |x-2| \leq x+4 nunca se cumple. Entonces, consideramos la siguiente condición sobre la variable x

x+4 < 0 \Rightarrow x<-4 \Rightarrow x \in \left( -\infty , -4 \right)

Finalmente, la solución general se define como la solución parcial excluyendo la condición, es decir,

Solución General:
[-1,+\infty) / \left( -\infty , -4 \right) = [-1,+\infty)



Ejemplo 7: Se anula la variable en la inecuación

Calcule los valores de x que satisfacen la siguiente desigualdad

|x+3| < x-6

Lo primero que debemos notar al calcular la solución de esta inecuación, es que en ambos lados de la desigualdad hay una incógnita. Así que al final debemos tener evaluar para qué valores, esta desigualdad tiene sentido.

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es menor que la expresión que está en el lado derecho de la inecuación.
  • Cuando la variable que está dentro del valor absoluto es mayor que el opuesto aditivo de la expresión que está en el lado derecho de la inecuación.

De esta forma, planteamos dos ecuaciones:

 \left\{ {\begin{array}{l} x+3 < x-6 \\ \text{y} \\ x+3 > -(x-6) \end{array} } \right.

Entonces, calculamos cada una de las ecuaciones planteadas:

Solución (1):

x+3 < x-6

\Rightarrow  x < x-6-3

\Rightarrow  x < x-9

\Rightarrow x - x \leq -9

\Rightarrow 0 \leq -9

Podemos notar que se anularon las variables y obtuvimos la desigualdad 0 \leq -9, esta desigualdad es falsa, por lo tanto, la solución aportada por esta inecuación se representa con el conjunto vacío \emptyset pues no hay ningún valor de x que la satisfaga.

Solución (2):

x+3 > -(x-6)

\Rightarrow x+3 > -x+6

\Rightarrow x > -x+6-3

\Rightarrow x > -x+3

\Rightarrow x +x > 3

\Rightarrow 2x > 3

\Rightarrow x > \frac{3}{2}

La solución de esta inecuación viene dada por todos los valores mayores que \frac{3}{2}, formalmente,

\left(\frac{3}{2},+\infty\right)

Finalmente tomamos en cuenta que la solución general viene dada por todos los números que cumplen con la solución (1) y todos los números que cumplen con la solución (2) al mismo tiempo. Por lo tanto, consideraremos la intersección de la solución (1) y (2).

Solución Parcial:
\emptyset \cap \left(\frac{3}{2},+\infty\right) = \emptyset

No hace falta verificar los valores de x para los cuales la expresión x-6 es negativa, pues al ser la solución parcial el conjunto vacío. Cualquier cosa que excluyamos nos dará como resultado, el conjunto vacío. Por lo tanto, la solución general es igual al conjunto vacío \emptyset.


Inecuaciones con Valor Absoluto, caso: «mayor que»

  1. Caso: «Mayor que»
    1. Ejemplos
      1. Ejemplo 1
      2. Ejemplo 2
      3. Ejemplo 3: Valor absoluto mayor que un número negativo
      4. Ejemplo 4: Variables en ambos lados de la inecuación
      5. Ejemplo 5: Variables en ambos lados de la inecuación
      6. Ejemplo 6: Se anula la variable en la inecuación
      7. Ejemplo 7: Se anula la variable en la inecuación

Caso: «Mayor que»

Al definir el valor absoluto de un número real, hemos visto que es igual a la distancia entre dicho número y el número cero. Partiendo de esta definición, pudimos definir ecuaciones que involucran el valor absoluto de una variable.

De forma que si queremos determinar todos los números que cuya distancia entre cuya distancia a cero es igual a 5, entonces planteamos la siguiente ecuación: |x| = 5 y finalmente, determinamos que estos números son 5 y -5.

Pero, ¿y si queremos determinar todos los números cuya distancia a cero es mayor que 5? Para dar respuesta a esta pregunta, podemos plantear la siguiente inecuación:

|x| > 5

También pudiera interesarte

Entonces, ¿qué números satisfacen dicha inecuación? Podemos tantear las respuestas, por ejemplo: el número 2 no la satisface, pues |2|=2 y 2 no es mayor que 5. Así podemos probar con los números 3, 4 y 5 pero ninguno de estos números satisface la inecuación.

Sin embargo, si consideramos 6, 7 u 8 podemos ver que estos números sí satisfacen la inecuación y en general podemos decir que cualquier número mayor que 5 satisface la inecuación pero, ¿serán esos los únicos números que satisfacen la inecuación?

La respuesta es no, pues si consideramos -6, -7 u -8 entonces estos números también satisfacen la inecuación y en general podemos decir que cualquier número menor que -7 satisface la inecuación.

Razonando de esta forma, podemos concluir que cualquier número que sea mayor que 5 o menor que -5 satisface la inecuación |x| > 5. Gráficamente, podemos representar todos estos números en la recta real de la siguiente forma:

En general, diremos que al considerar una inecuación de la forma |x| > a, donde a es un número real; la solución viene dada por todos los números mayores que a ó todos los números menores que a, formalmente se puede calcular la solución planteando la siguiente equivalencia:

\Large \left| x \right| > a \Longleftrightarrow \left\{ {\begin{array}{l} x > a \\ \text{\'o} \\ x < -a \end{array} } \right.


Nota: el «ó» que se expresa en nuestra solución tiene un carácter lógico proposicional, esto quiere decir que es un «ó» inclusivo. Es decir, ambas opciones pueden presentar una solución para nuestra solución.

Imagínese que en una reunión con sus amigos, acuerdan llevar empanadas o pastelitos para comer, es decir, si sólo hay empanadas, solo hay pastelitos o hay ambas cosas, igual van a comer.


Veamos con algunos ejemplos como calcular la solución de este tipo de inecuaciones.



Ejemplos

Ejemplo 1

Calcule los valores de x que satisfacen la siguiente desigualdad

|x+3| > 1

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es mayor que la expresión que está en el lado derecho de la inecuación.
  • Cuando la variable que está dentro del valor absoluto es menor que el opuesto aditivo de la expresión que está en el lado derecho de la inecuación.

De esta forma, planteamos dos ecuaciones:

 \left\{ {\begin{array}{lr} x + 3 > 1  & \text{(1)} \\ \text{\'o} \\ x + 3 < -1 & \text{(2)}  \end{array} } \right.

Entonces, calculamos cada una de las ecuaciones planteadas:

Solución (1):

x + 3 > 1

\Rightarrow x > 1 - 3

\Rightarrow x > - 2

La solución de esta inecuación viene dada por todos los valores mayores que -2, formalmente,

(-2,+\infty)

Intervalos | totumat.com

Solución (2):

x + 3 < -1

\Rightarrow x < -1 - 3

\Rightarrow x < - 4

La solución de esta inecuación viene dada por todos los valores menores que -4, formalmente,

(-\infty,-4)

Intervalos | totumat.com

Finalmente tomamos en cuenta que la solución general viene dada por todos los números que cumplen con la solución (1) o todos los números que cumplen con la solución (2). Por lo tanto, consideraremos la unión de la solución (1) y (2).

Solución General:
(-\infty,-4) \cup (-2,+\infty)

Ejemplo 2

Calcule los valores de x que satisfacen la siguiente desigualdad

|4x+1| \geq 7

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es mayor o igual que la expresión que está en el lado derecho de la inecuación.
  • Cuando la variable que está dentro del valor absoluto es menor o igual que el opuesto aditivo de la expresión que está en el lado derecho de la inecuación.

De esta forma, planteamos dos ecuaciones:

 \left\{ {\begin{array}{lr} 4x+1 \geq 7  & \text{(1)} \\ \text{\'o} \\ 4x+1 \leq -7 & \text{(2)}  \end{array} } \right.

Entonces, calculamos cada una de las ecuaciones planteadas:

Solución (1):

4x+1 \geq 7

\Rightarrow 4x \geq 7 - 1

\Rightarrow 4x \geq 6

\Rightarrow x \geq \frac{6}{4}

\Rightarrow x \geq \frac{3}{2}

La solución de esta inecuación viene dada por todos los valores mayores o iguales que \frac{3}{2}, formalmente,

\left[ \frac{3}{2},+\infty \right)

Solución (2):

4x+1 \leq -7

\Rightarrow 4x \leq -7 - 1

\Rightarrow 4x \leq -8

\Rightarrow x \leq -\frac{8}{4}

\Rightarrow x \leq -2

La solución de esta inecuación viene dada por todos los valores menores o iguales que \frac{3}{2}, formalmente,

(-\infty,-2]

Finalmente tomamos en cuenta que la solución general viene dada por todos los números que cumplen con la solución (1) o todos los números que cumplen con la solución (2). Por lo tanto, consideraremos la unión de la solución (1) y (2).

Solución General:
(-\infty,-2] \cup \left[ \frac{3}{2},+\infty \right)



Ejemplo 3: Valor absoluto mayor que un número negativo

Calcule los valores de x que satisfacen la desigualdad

|-2x+16| > -8

Al considerar esta inecuación, no es necesario hacer el procedimiento que hemos visto en los primeros ejemplos pues recordando que el valor absoluto de un número siempre es positivo, tenemos que sea cual sea el valor de x ese valor absoluto siempre será mayor que -8. Básicamente la pregunta es: ¿cuándo un número positivo es mayor que un número negativo?

La respuesta es: Siempre. Por lo tanto, la solución de esta inecuación viene dada por el conjunto de todos los números reales:

\mathbb{R} = (-\infty,+\infty)


Ejemplo 4: Variables en ambos lados de la inecuación

Calcule los valores de x que satisfacen la siguiente desigualdad

|2x-1|> -x+3

Lo primero que debemos notar al calcular la solución de esta inecuación, es que en ambos lados de la desigualdad hay una incógnita. Así que al final debemos tener evaluar para qué valores, esta desigualdad tiene sentido.

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es mayor que la expresión que está en el lado derecho de la inecuación.
  • Cuando la variable que está dentro del valor absoluto es menor que el opuesto aditivo de la expresión que está en el lado derecho de la inecuación.

De esta forma, planteamos dos ecuaciones:

 \left\{ {\begin{array}{lr} 2x-1>-x+3  & \text{(1)} \\ \text{\'o} \\ 2x-1<-(-x+3) & \text{(2)}  \end{array} } \right.

Entonces, calculamos cada una de las ecuaciones planteadas:

Solución (1):

2x - 1 > -x + 3

\Rightarrow 2x > -x + 3 + 1

\Rightarrow 2x > -x + 4

\Rightarrow 2x + x > 4

\Rightarrow 3x > 4

\Rightarrow x > \frac{4}{3}

La solución de esta inecuación viene dada por todos los valores mayores que \frac{4}{3}, formalmente,

\left( \frac{4}{3},+\infty \right)

Solución (2):

2x - 1 < -(-x + 3)

\Rightarrow 2x - 1 < x - 3

\Rightarrow 2x < x -3 + 1

\Rightarrow 2x < x - 2

\Rightarrow 2x - x < -2

\Rightarrow x < -2

La solución de esta inecuación viene dada por todos los valores menores que -2, formalmente,

\left(-\infty,-2 \right)

Definimos la solución parcial a partir de todos los números que cumplen con la solución (1) o todos los números que cumplen con la solución (2). Por lo tanto, consideraremos la unión de la solución (1) y (2).

Solución Parcial:
\left( \frac{4}{3},+\infty \right) \cup (-\infty,-2)

Para determinar la solución general, debemos verificar los valores de x para los cuales la expresión -x+3 es negativa, pues para estos valores, la desigualdad |2x-1|> -x+3 siempre se cumple. Entonces, consideramos la siguiente condición sobre la variable x

-x+3 < 0 \Rightarrow -x<-3 \Rightarrow x > 3 \Rightarrow x \in (3,+\infty)

Finalmente, la solución general se define como la solución parcial incluyendo la condición, es decir,

Solución General:
\left( \frac{4}{3},+\infty \right) \cup (-\infty,-2) \cup (3,+\infty) = \left( \frac{4}{3},+\infty \right) \cup (-\infty,-2)



Ejemplo 5: Variables en ambos lados de la inecuación

Calcule los valores de x que satisfacen la siguiente desigualdad

|-3x+2| \geq 4x+1

Lo primero que debemos notar al calcular la solución de esta inecuación, es que en ambos lados de la desigualdad hay una incógnita. Así que al final debemos tener evaluar para qué valores, esta desigualdad tiene sentido.

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es mayor o igual que la expresión que está en el lado derecho de la inecuación.
  • Cuando la variable que está dentro del valor absoluto es menor o igual que el opuesto aditivo de la expresión que está en el lado derecho de la inecuación.

De esta forma, planteamos dos ecuaciones:

 \left\{ {\begin{array}{lr} -3x+2 \geq 4x+1  & \text{(1)} \\ \text{\'o} \\ -3x+2 \leq -(4x+1) & \text{(2)}  \end{array} } \right.

Entonces, calculamos cada una de las ecuaciones planteadas:

Solución (1):

-3x+2 \geq 4x+1

\Rightarrow -3x \geq 4x+1-2

\Rightarrow -3x \geq 4x - 1

\Rightarrow -3x -4x \geq - 1

\Rightarrow -7x \geq - 1

\Rightarrow x \leq \frac{-1}{-7}

\Rightarrow x \leq \frac{1}{7}

La solución de esta inecuación viene dada por todos los valores menores o iguales que \frac{1}{7}, formalmente,

\left(-\infty, \frac{1}{7} \right]

Solución (2):

-3x+2 \leq -(4x+1)

\Rightarrow -3x+2 \leq -4x-1

\Rightarrow -3x \leq -4x-1-2

\Rightarrow -3x \leq -4x - 3

\Rightarrow -3x +4x \leq - 3

\Rightarrow x < -3

La solución de esta inecuación viene dada por todos los valores menores que -2, formalmente,

\left(-\infty,-2 \right)

Definimos la solución parcial a partir de todos los números que cumplen con la solución (1) o todos los números que cumplen con la solución (2). Por lo tanto, consideraremos la unión de la solución (1) y (2).

Solución Parcial:
\left( -\infty , \frac{1}{7} \right] \cup ( -\infty,- 3 ] = \left( -\infty , \frac{1}{7} \right]

Para determinar la solución general, debemos verificar los valores de x para los cuales la expresión 4x+1 es negativa, pues para estos valores, la desigualdad |-3x+2| \geq 4x+1 siempre se cumple. Entonces, consideramos la siguiente condición sobre la variable x

4x+1 < 0 \Rightarrow 4x < -1 \Rightarrow x < -\frac{1}{4} \Rightarrow x \in \left( -\infty , -\frac{1}{4} \right)

Finalmente, la solución general se define como la solución parcial incluyendo la condición, es decir,

Solución General:
(-\infty,\frac{1}{7}] \cup \left( -\infty , -\frac{1}{4} \right) = (-\infty,-\frac{1}{7}]



Ejemplo 6: Se anula la variable en la inecuación

Calcule los valores de x que satisfacen la siguiente desigualdad

|x-2| \geq x+4

Lo primero que debemos notar al calcular la solución de esta inecuación, es que en ambos lados de la desigualdad hay una incógnita. Así que al final debemos tener evaluar para qué valores, esta desigualdad tiene sentido.

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es mayor o igual que la expresión que está en el lado derecho de la inecuación.
  • Cuando la variable que está dentro del valor absoluto es menor o igual que el opuesto aditivo de la expresión que está en el lado derecho de la inecuación.

De esta forma, planteamos dos ecuaciones:

 \left\{ {\begin{array}{lr} x-2 \geq x+4  & \text{(1)} \\ \text{\'o} \\ x-2 \leq -(x+4) & \text{(2)}  \end{array} } \right.

Entonces, calculamos cada una de las ecuaciones planteadas:

Solución (1):

x-2 \geq x+4

\Rightarrow x \geq x+4+2

\Rightarrow x \geq x+6

\Rightarrow x - x \geq 6

\Rightarrow 0 \geq 6

Podemos notar que se anularon las variables y obtuvimos la desigualdad 0 \geq 6, esta desigualdad es falsa, por lo tanto, la solución aportada por esta inecuación se representa con el conjunto vacío \emptyset pues no hay ningún valor de x que la satisfaga.

Solución (2):

x-2 \leq -(x+4)

\Rightarrow x-2 \leq -x-4

\Rightarrow x \leq -x-4+2

\Rightarrow x + x \leq -2

\Rightarrow 2x \leq -2

\Rightarrow x \leq -\frac{2}{2}

\Rightarrow x \leq - 1

La solución de esta inecuación viene dada por todos los valores menores o iguales que -1, formalmente,

\left(-\infty,-1 \right]

Definimos la solución parcial a partir de todos los números que cumplen con la solución (1) o todos los números que cumplen con la solución (2). Por lo tanto, consideraremos la unión de la solución (1) y (2).

Solución Parcial:
\emptyset \cup (-\infty,-1] = (-\infty,-1]

Para determinar la solución general, debemos verificar los valores de x para los cuales la expresión x+4 es negativa, pues para estos valores, la desigualdad |x-2| \geq x+4 siempre se cumple. Entonces, consideramos la siguiente condición sobre la variable x

x+4 < 0 \Rightarrow x<-4 \Rightarrow x \in \left( -\infty , -4 \right)

Finalmente, la solución general se define como la solución parcial incluyendo la condición, es decir,

Solución General:
(-\infty,-1] \cup \left( -\infty , -4 \right) = (-\infty,-1]



Ejemplo 7: Se anula la variable en la inecuación

Calcule los valores de x que satisfacen la siguiente desigualdad

|x+3| > x-6

Lo primero que debemos notar al calcular la solución de esta inecuación, es que en ambos lados de la desigualdad hay una incógnita. Así que al final debemos tener evaluar para qué valores, esta desigualdad tiene sentido.

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es mayor o igual que la expresión que está en el lado derecho de la inecuación.
  • Cuando la variable que está dentro del valor absoluto es menor o igual que el opuesto aditivo de la expresión que está en el lado derecho de la inecuación.

De esta forma, planteamos dos ecuaciones:

 \left\{ {\begin{array}{lr} x+3 > x-6  & \text{(1)} \\ \text{\'o} \\ x+3 < -(x-6)  & \text{(2)}  \end{array} } \right.

Entonces, calculamos cada una de las ecuaciones planteadas:

Solución (1):

x+3 > x-6

\Rightarrow x > x - 6 - 3

\Rightarrow x > x - 9

\Rightarrow x - x > - 9

\Rightarrow 0 > - 9

Podemos notar que se anularon las variables y obtuvimos la desigualdad 0 > - 9, esta desigualdad es verdadera, por lo tanto, la solución aportada por esta inecuación se representa con todo el conjunto los números reales \mathbb{R} = (-\infty,+\infty) pues cualquier valor de x que la satisface.

Solución (2):

x+3 < -(x-6)

\Rightarrow x+3 < -x+6

\Rightarrow x < -x+6-3

\Rightarrow x < -x+3

\Rightarrow x + x < 3

\Rightarrow 2x < 3

\Rightarrow x < \frac{3}{2}

La solución de esta inecuación viene dada por todos los valores menores que \frac{3}{2}, formalmente,

\left(-\infty, \frac{3}{2} \right]

Definimos la solución parcial a partir de todos los números que cumplen con la solución (1) o todos los números que cumplen con la solución (2). Por lo tanto, consideraremos la unión de la solución (1) y (2).

Solución Parcial:
\mathbb{R} \cup \left(-\infty,\frac{3}{2} \right) = \mathbb{R}

Para determinar la solución general, debemos verificar los valores de x para los cuales la expresión x-6 es negativa, pues para estos valores, la desigualdad |x+3| > x-6 siempre se cumple. Pero notemos que si unimos el conjunto que obtenemos de esta condición, independientemente de cual sea, la solución será la misma: el conjunto de los números reales \mathbb{R} = (-\infty,+\infty).


Introducción a las ecuaciones con valor absoluto

  1. ¿Qué es una distancia?
  2. ¿Qué es el valor absoluto de un número?
    1. Ejemplos
      1. Ejemplo 1
      2. Ejemplo 2
  3. Ecuaciones con Valor Absoluto
    1. Ejemplos
      1. Ejemplo 3
      2. Ejemplo 4
      3. Ejemplo 5
      4. Ejemplo 6
      5. Ejemplo 7: El valor absoluto igual a un número negativo
      6. Ejemplo 8: Variables en ambos lados de la ecuación
      7. Ejemplo 8: Variables en ambos lados de la ecuación

¿Qué es una distancia?

Si consideramos dos objetos posicionados en dos lugares distintos, siempre habrá un espacio que los separa, al espacio más pequeño que los separa, se conoce como la distancia entre ellos dos y es posible medir este espacio fijando patrones, por ejemplo: metros, kilometros, bananas, pies, pulgadas o hasta canchas de fútbol americano.

En ocasiones, al trabajar con problemas de matemáticas avanzados, más allá de obtener valores, es necesario medir la magnitud de estos, pues su interpretación en el problema que se esté describiendo puede indicar resultados importantes. Para esto, debemos definir una herramienta que nos permita medir la magnitud de un número.

También pudiera interesarte

¿Qué es el valor absoluto de un número?

Si a es un número real, definimos valor absoluto de a como la distancia que hay entre a número y el número cero. El valor absoluto de a se denota encerrando el número a con dos barras verticales de al siguiente manera |a| y formalmente se expresa así:

 \large \left| a \right| = \left\{ {\begin{array}{lcr} a & \text{si} & a \geq 0\\ \text{\'o} & & \\ -a & \text{si} & a < 0 \end{array} } \right.

Ejemplos

Consideremos dos números, uno negativo y otro negativo, y veamos cómo calcular el valor absoluto de estos usando la definición formal:

Ejemplo 1

Si consideramos el número 3, como éste es un número positivo entonces tenemos que 3>0, por lo tanto |3|=3. Gráficamente, nos damos cuenta que la distancia entre el número 3 y el número cero, es igual a 3.

Ejemplo 2

Por otra parte si consideramos el número -2, como este es un número negativo entonces tenemos que -2<0, por lo tanto |-2|=-(-2)=2. Gráficamente, nos damos cuenta que la distancia entre el número -2 y el número cero, es igual a 2.


Nota: El valor absoluto de cero, es igual a cero, pues la distancia entre el cero y él mismo es igual a cero. Por otra parte, el valor absoluto de cualquier número real distinto de cero, al ser una medida, siempre es un número positivo.




Ecuaciones con Valor Absoluto

Suponga que se plantea una situación que se puede describir con la siguiente ecuación: |x| = 5, ¿qué números son los que satisfacen la igualdad? Sabemos que |5|=5 por lo que podemos concluir que x=5 es una solución de esta ecuación. Sin embargo, debemos notar que |-5|=5, asi que podemos concluir que x=-5 también es una solución de esta ecuación.

En vista de que hay dos valores de x que satisfacen la igualdad, entonces la solución de la ecuación está definida por el conjunto \{-5,5\} pues ambos valores satisfacen la ecuación.

De forma general, si consideramos la ecuación |x| = a, entonces los valores que satisfacen esta inecuación son a y el opuesto aditivo de a, es decir, -a. Esto lo podemos expresar con la siguiente equivalencia.

\displaystyle \Large \left| x \right| =  a \Longleftrightarrow \left\{ {\begin{array}{l} x = a \\ \text{\'o} \\ x = -a \end{array} } \right.

Ejemplos

Consideremos algunos ejemplos de ecuaciones lineales que involucran el valor absoluto de una variable.

Ejemplo 3

Calcule los valores de x que satisfacen la siguiente ecuación:

|x|=7

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es igual a la expresión que está en el lado derecho de la ecuación.
  • Cuando la variable que está dentro del valor absoluto es igual al opuesto aditivo de la expresión que está en el lado derecho de la ecuación.

De esta forma, planteamos dos ecuaciones:

 \left| x \right| =  7 \Longleftrightarrow \left\{ {\begin{array}{l} x = 7 \\ \text{\'o} \\ x = -7 \end{array} } \right.

Solución (1):

x = 7

Solución (2):

x = -7

Por lo tanto, la solución general de esta ecuación está viene dada por el conjunto \{-7,7\}.

Ejemplo 4

Calcule los valores de x que satisfacen la siguiente ecuación:

|x+4|=1

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es igual a la expresión que está en el lado derecho de la ecuación.
  • Cuando la variable que está dentro del valor absoluto es igual al opuesto aditivo de la expresión que está en el lado derecho de la ecuación.

De esta forma, planteamos dos ecuaciones:

 |x+4| = 1 \Longleftrightarrow \left\{ {\begin{array}{l} x + 4 = 1 \\ \text{\'o} \\ x + 4 = -1 \end{array} } \right.

Solución (1):

x + 4 = 1

\Rightarrow x = 1 - 4

\Rightarrow x = - 3

Solución (2):

x + 4 = -1

\Rightarrow x = -1 - 4

\Rightarrow x = - 5

Por lo tanto, la solución general de esta ecuación está viene dada por el conjunto \{-3,-5\}.

Ejemplo 5

Calcule los valores de x que satisfacen la siguiente ecuación:

|-x+5|=9

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es igual a la expresión que está en el lado derecho de la ecuación.
  • Cuando la variable que está dentro del valor absoluto es igual al opuesto aditivo de la expresión que está en el lado derecho de la ecuación.

De esta forma, planteamos dos ecuaciones:

 |-x+5|=9 \Longleftrightarrow \left\{ {\begin{array}{l} -x + 5 = 9 \\ \text{\'o} \\ -x + 5 = -9 \end{array} } \right.

Solución (1):

-x + 5 = 9

\Rightarrow -x = 9 - 5

\Rightarrow -x = 4

\Rightarrow x = - 4

Solución (2):

-x + 5 = -9

\Rightarrow -x = -9 - 5

\Rightarrow -x = -14

\Rightarrow x = 14

Por lo tanto, la solución general de esta ecuación está viene dada por el conjunto \{-4,14\}.

Ejemplo 6

Calcule los valores de x que satisfacen la siguiente ecuación:

|6x-10|=5

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es igual a la expresión que está en el lado derecho de la ecuación.
  • Cuando la variable que está dentro del valor absoluto es igual al opuesto aditivo de la expresión que está en el lado derecho de la ecuación.

De esta forma, planteamos dos ecuaciones:

 |6x-10|=5 \Longleftrightarrow \left\{ {\begin{array}{l} 6x - 10 = 5 \\ \text{\'o} \\ 6x - 10 = -5 \end{array} } \right.

Solución (1):

6x - 10 = 5

\Rightarrow 6x = 5 + 10

\Rightarrow 6x = 15

\Rightarrow x = \dfrac{15}{6}

\Rightarrow x = \dfrac{5}{2}

Solución (2):

6x - 10 = -5

\Rightarrow 6x = -5 + 10

\Rightarrow 6x = 5

\Rightarrow x = \dfrac{5}{6}

Por lo tanto, la solución general de esta ecuación está viene dada por el conjunto \left\{ \frac{5}{6} , \frac{5}{2} \right\}.



Ejemplo 7: El valor absoluto igual a un número negativo

Calcule los valores de x que satisfacen la siguiente ecuación:

|2x+7|=-12

Recordemos que el valor absoluto, al ser una medida, es siempre mayor o igual a cero. Por lo tanto, no existe un valor de x para el cual el valor absoluto sea igual al número negativo -12. En resumen, si nos preguntamos: ¿cuándo un número positivo es negativo? La respuesta es: nunca.

Ejemplo 8: Variables en ambos lados de la ecuación

Calcule los valores de x que satisfacen la siguiente ecuación:

|2x+1|=x+4

Lo primero que debemos notar al calcular la solución de esta ecuación, es que en ambos lados de la desigualdad hay una incógnita. Así que al final debemos tener evaluar para qué valores, esta igualdad tiene sentido.

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es igual a la expresión que está en el lado derecho de la ecuación.
  • Cuando la variable que está dentro del valor absoluto es igual al opuesto aditivo de la expresión que está en el lado derecho de la ecuación.

De esta forma, planteamos dos ecuaciones:

 |2x+1|=x+4 \Longleftrightarrow \left\{ {\begin{array}{l} 2x + 1 = x + 4 \\ \text{\'o} \\ 2x + 1 = -(x + 4) \\ \end{array} } \right.

Solución (1):

2x + 1 = x + 4

\Rightarrow 2x = x + 4 - 1

\Rightarrow 2x = x + 3

\Rightarrow 2x - x = 3

\Rightarrow x = 3

Solución (2):

2x + 1 = -(x + 4)

\Rightarrow 2x + 1 = -x - 4

\Rightarrow 2x = -x - 4 - 1

\Rightarrow 2x = -x - 5

\Rightarrow 2x + x = - 5

\Rightarrow 3x = - 5

\Rightarrow x = - \frac{5}{3}

Considerando la expresión x+4, no sabemos si esta es positiva o negativa, pues su valor depende del valor que tenga la variable x. Entonces, definimos la solución parcial de nuestra ecuación con el conjunto \left\{ -\frac{5}{3} , 3 \right\}.

Para determinar la solución general, debemos descartar los valores de x para los cuales la expresión x+4 es negativa, pues el valor absoluto de un número siempre es positivo. Así,

  • Si x=3, entonces x+4 = 3 +4 = 7, por lo tanto x=3 sí es una solución de la ecuación.
  • Si x=-\frac{5}{3}, entonces x+4 = -\frac{5}{3} +4 = \frac{7}{3}, por lo tanto x=-\frac{5}{3} sí es una solución de la ecuación.

Por lo tanto, la solución general de esta ecuación está viene dada por el conjunto \left\{ -\frac{5}{3} , 3 \right\}.

Ejemplo 8: Variables en ambos lados de la ecuación

Calcule los valores de x que satisfacen la siguiente ecuación:

|x+7|=2x+5

Lo primero que debemos notar al calcular la solución de esta ecuación, es que en ambos lados de la desigualdad hay una incógnita. Así que al final debemos tener evaluar para qué valores, esta igualdad tiene sentido.

Para calcular la solución de esta ecuación, debemos plantear dos casos:

  • Cuando la variable que está dentro del valor absoluto es igual a la expresión que está en el lado derecho de la ecuación.
  • Cuando la variable que está dentro del valor absoluto es igual al opuesto aditivo de la expresión que está en el lado derecho de la ecuación.

De esta forma, planteamos dos ecuaciones:

 |x+7|=2x+5 \Longleftrightarrow \left\{ {\begin{array}{l} x + 7 = 2x + 5 \\ \text{\'o} \\ x + 7 = -(2x + 5) \\ \end{array} } \right.

Solución (1):

x + 7 = 2x + 5

\Rightarrow x = 2x + 5 - 7

\Rightarrow x = 2x  - 2

\Rightarrow x -2x = - 2

\Rightarrow -x = - 2

\Rightarrow x = 2

Solución (2):

x + 7 = -(2x + 5)

\Rightarrow x + 7 = -2x - 5

\Rightarrow x = -2x - 5 - 7

\Rightarrow x = -2x  - 12

\Rightarrow x  + 2x  = - 12

\Rightarrow 3x = - 12

\Rightarrow x = - \frac{12}{3}

\Rightarrow x = - 4

Considerando la expresión 2x + 5, no sabemos si esta es positiva o negativa, pues su valor depende del valor que tenga la variable x. Entonces, definimos la solución parcial de nuestra ecuación con el conjunto \left\{-4 , 2 \right\}.

Para determinar la solución general, debemos descartar los valores de x para los cuales la expresión 2x + 5 es negativa, pues el valor absoluto de un número siempre es positivo. Así,

  • Si x=2, entonces 2x+5 = 2(2) +4 = 4+4 = 8, por lo tanto x=2 sí es una solución de la ecuación.
  • Si x=-4, entonces 2x+5 = 2(-4) +4 = -8+4 = -4, por lo tanto x=-4 no es una solución de la ecuación.

Por lo tanto, la solución general de esta ecuación está viene dada por el conjunto \left\{ 2 \right\}.