La Propiedad Distributiva | totumat.com

La Propiedad Distributiva

Al sumar números reales tenemos la libertad de asociar los números involucrados con ligereza y de igual forma, podemos asociar los números involucrados si estamos multiplicando números reales, sin embargo, debemos ser precavidos cuando nos topamos con operaciones mixtas, es decir, sumas y productos al mismo tiempo. A continuación veremos una propiedad que nos permite operar sumas y productos al mismo tiempo.

También pudiera interesarte

La propiedad distributiva establece que si un número multiplica a la suma de dos números, entonces el factor involucrado se distribuye entre cada uno de los sumandos. Formalmente, si a, b y c son números reales, entonces

La Propiedad Distributiva | totumat.com

Podemos también aplicar esta propiedad si dentro de los paréntesis está involucrada una resta en vez de una suma, de la siguiente forma:

totumat.com

Notamos que si observamos esta igualdad de derecha a izquierda, estamos tomando el factor común que hay en ambos sumandos y lo estamos sacando a multiplicar:

a \cdot b \pm a \cdot c = a \cdot (b \pm c)

Esta es una de las propiedades más usadas en al cálculo de operaciones mixtas y a partir de ellas, se deducen algunos casos que facilitan la simplificación de expresiones matemáticas. Veamos algunos ejemplos para entender bien esta propiedad:

Anuncios

Ejemplos

Ejemplo 1

Use la propiedad distributiva para expandir la expresión 2 \cdot (1 + 6). En este caso no es necesario usar la propiedad distributiva ya que podemos sumar los números que están dentro de los paréntesis y posteriormente multiplicar de la siguiente forma:

2 \cdot (1 + 6) = 2 \cdot 7 = 14

Ejemplo 2

Use la propiedad distributiva para expandir la expresión 2 \cdot \left( 1 + \sqrt{6} \right). Notemos que uno de los sumandos involucrados es la raíz cuadrada de 6, por lo tanto no se puede sumar con 1, entonces distribuimos el factor involucrado

2 \cdot \left( 1 + \sqrt{6} \right) = 2 \cdot 1 + 2 \cdot \sqrt{6} = 2 + 2 \sqrt{6}

Ejemplo 3

Use la propiedad distributiva para expandir la expresión 5 \cdot \left( x - \sqrt{10} \right). Notemos que uno de los sumandos involucrados es la raíz cuadrada de 10 y el otro es una incógnita, por lo tanto no se pueden restar, entonces distribuimos el factor involucrado

5 \cdot \left( x - \sqrt{10} \right) = 5 \cdot x - 5 \cdot \sqrt{10} = 5x - 5\sqrt{10}

Ejemplo 4

Use la propiedad distributiva para expandir la expresión x \cdot \left( x + x^2 \right). Notemos que uno de los sumandos involucrados una incógnita y el otro es una incógnita elevada al cuadrado, por lo tanto no se pueden sumar, entonces distribuimos el factor involucrado

x \cdot \left( x + x^2 \right) = x \cdot x + x \cdot x^2 = x^2 + x^3

Ejemplo 5

Use la propiedad distributiva para sacar el factor común de la expresión 18 + 3\sqrt{7}. Notemos que 18=3 \cdot 6, entonces,

18 + 3\sqrt{7} = 3 \cdot 6 + 3 \sqrt{7} = 3 \cdot \left( 6 + \sqrt{7} \right)

Ejemplo 6

Use la propiedad distributiva para sacar el factor común de la expresión x^4 - 8x. Notemos que uno de los sumandos involucrados es una incógnita elevada a la cuatro y el otro es 8 veces dicha incógnita, por lo tanto no se pueden restar, entonces

x^4 - 8x = x \cdot x^3 - x \cdot 8 = x \cdot \left( x^3 - 8 \right)

Ejemplo 7

Use la propiedad distributiva para sacar el factor común de la expresión 12x^7 + 15x^4. Estos dos elementos no se pueden sumar, entonces

12x^7 + 15x^4 = 3 \cdot 4 \cdot x^4 \cdot x^3 + 3 \cdot 5 \cdot x^4 = 3 x^4 \cdot \left( 4x^3 + 5 \right)

Anuncios

Ejemplo 8

Use la propiedad distributiva para expandir la expresión 2 \cdot (3x + 4 + 7x + 5). Notemos que podemos agrupar los elementos que están dentro de los paréntesis, para obtener

2 \cdot (3x + 7x + 4 + 5)

Sumamos los elementos que están multiplicando a x y por otra parte, los términos independientes.

2 \cdot (10x + 9)

Finalmente, efectuamos la propiedad distributiva.

20x + 18

Ejemplo 9

Use la propiedad distributiva para expandir la expresión 5 \cdot (10 + x - 5x + 6y - 6 + 8y). Notemos que podemos agrupar los elementos que están dentro de los paréntesis, para obtener

5 \cdot (x - 5x + 6y +8y + 10 - 6)

Sumamos los elementos que están multiplicando a x, por otra parte los elementos que están multiplicando a y y por otra parte, los términos independientes.

5 \cdot (- 4x + 14y + 4)

Finalmente, efectuamos la propiedad distributiva.

-20x + 70y + 20

Ejemplo 10

Use la propiedad distributiva para expandir la expresión (\frac{24}{100}q + 10) \cdot q. Pese a que la variable q aparece como un factor en el lado derecho de la expresión, podemos distribuirlo en cada uno de los sumandos tal como si apareciera del lado izquierdo:

\frac{24}{100}q \cdot q + 10 \cdot q

Notando que al multiplicar $q \cdot q$, ambos factores tienen la misma base, entonces obtenemos lo siguiente

\frac{24}{100}q^2 + 10q


Video Complementario

Los números enteros y sus operaciones

  1. ¿Qué son los números enteros?
  2. Operaciones entre Números Enteros
    1. Suma y Resta de Números Enteros
      1. Ejemplos
        1. Ejemplo 1
        2. Ejemplo 2
        3. Ejemplo 3
        4. Ejemplo 4
    2. El producto de Enteros y la Ley de los Signos
      1. Ejemplo
        1. Ejemplo 5
        2. Ejemplo 6
        3. Ejemplo 7
        4. Ejemplo 8

¿Qué son los números enteros?

Considere el número 4 y el número 7, estos dos son números naturales y por lo tanto ambos representan una cantidad de objetos. Suponga que se tiene una caja con 7 juguetes y se sacan 4 juguetes de ella. La caja quedaría con 3 juguetes. Ahora bien, ¿qué pasaría si se tiene una caja con 4 juguetes y queremos sacar 4 juguetes? ¿O si se quieren sacar 7 juguetes? ¿Puede el resultado de esta situación representarse con un número natural?

También pudiera interesarte

Respondamos la primera pregunta, si se tienen 4 juguetes en una caja y se sacan 4, no queda ningún juguete en la caja. Sin embargo, no conocemos ningún número natural que podamos corresponder con esta situación, así que definiremos un nuevo número llamado cero que denotaremos por 0 y nos representará ninguna cantidad.

El número cero permite definir una nueva gama de números, de la siguiente forma: Si a es un número natural entonces definimos un nuevo número -a como su opuesto aditivo, que tendrá la siguiente propiedad:

a + (-a) = (-a) + a = 0

Nota: Podemos decir, además, que a es el opuesto aditivo de -a.

Sentando base en estos nuevos números podemos definir una nueva operación, si consideramos dos números naturales a y b, entonces al sumar a con el opuesto aditivo de b, la operación a+(-b) se conoce como la resta y la escribimos de la siguiente forma:

a-b

Definiremos el conjunto de los Números Enteros como un nuevo conjunto que contiene a todos los números naturales junto con el número 0 y el opuesto aditivo de cada número natural. Lo denotaremos por \mathbb{Z} y lo expresamos extensivamente así:

\mathbb{Z} = \{ \ldots,-3,-2,-1,0,1,2,3,\ldots \}

Este conjunto continúa de manera indefinida siguiendo la secuencia de los números naturales 1,2,3,4, \ldots y además, siguiendo la secuencia de los opuestos aditivos de los números naturales -1,-2,-3,-4, \ldots, es por eso que usamos tres puntos suspensivos al definirlo de forma extensiva.

También será posible representar este conjunto gráficamente, disponiendo cada elemento de forma ordenada en una recta. Los números naturales se escriben hacia la derecha y sus opuestos aditivos se escriben hacia la izquierda, el cero se escribe el medio de ambos, así

Representación gráfica de los números enteros | totumat.com

Es importante acotar que el conjunto de los números naturales es un subconjunto del conjunto de los números enteros, es decir,

\mathbb{N} \subset \mathbb{Z}


Operaciones entre Números Enteros

Al efectuar operaciones entre números naturales tales como la suma o el producto, es poco el cuidado que tenemos sobre el signo pues el resultado siempre es positivo. Sin embargo, la resta de números naturales puede presentar algunos problemas, es por esto que hemos definido los números enteros, así que veamos como se efectúan.

También pudiera interesarte

Suma y Resta de Números Enteros

Si consideramos los números enteros 2 y 3, entonces 3+2=5. Sin bien esta operación la podemos hacer en nuestra mente de forma inmediata, para entender de forma general la suma de dos números enteros consideremos la siguiente representación gráfica:

suma de números enteros tres más dos es igual a cinco | totumat.com
tres más dos es igual a cinco

Si sumamos 3+2, lo que en realidad estamos haciendo es trasladándonos dos espacios a la derecha del número 3 para caer en el número 5. Entonces, si así es la suma la pregunta natural que surge es: ¿cómo calculamos la resta?

Si sumamos 2+(-3)=2-3, estamos trasladándonos tres espacios a la izquierda del número 2 para caer en el -1. Consideremos la siguiente representación gráfica:

resta de números enteros dos menos tres es igual a menos uno | totumat.com
dos menos tres es igual a menos uno

De esta forma, podemos establecer una regla informal sobre la suma de números enteros de la siguiente forma:

Signos iguales se suman y se mantiene el signo.
Signos diferentes se restan y dejamos el signo del mayor.



Ejemplos

Ejemplo 1

Para efectuar la suma 7 +10, ambos números tienen signo positivo, así que los sumamos y mantenemos el signo positivo.

7 +10 = 17

Ejemplo 2

Para efectuar la suma 9 + (-3), estos números tienen signos diferentes, así que los restamos y dejamos del signo del mayor, en este caso, 9 es el mayor, así que dejamos el signo positivo.

9 + (-3) = 9 - 3 = 6

Ejemplo 3

Para efectuar la suma (-20) + 11, estos números tienen signos diferentes, así que los restamos y dejamos del signo del mayor, en este caso, 20 es el mayor, así que dejamos el signo negativo.

(-20) + 11 = 11 - 20 = -9

Ejemplo 4

Para efectuar la suma (-37) + (-23), ambos números tienen signo negativo, así que los sumamos y mantenemos el signo negativo.

(-37) + (-23) = - 37 - 23 = - 60


El producto de Enteros y la Ley de los Signos

El producto entre dos números enteros lo definiremos igual que el producto entre números naturales, pero debemos tener ciertas consideraciones sobre los signos. Sean a y b dos números naturales, entonces:

(+a) \cdot (+b) = +(a \cdot b)

(-a) \cdot (+b) = -(a \cdot b)

(+a) \cdot (-b) = -(a \cdot b)

(-a) \cdot (-b) = +(a \cdot b)

De esta forma, podemos establecer una regla informal conocida como la Ley de Los Signos sobre el producto de números enteros de la siguiente forma:

Más por más, más.
Más por menos, menos.
Menos por más, menos.
Menos por menos, más.



Ejemplo

Ejemplo 5

Para efectuar el producto 3 \cdot 3, el signo de ambos factores es positivo, así que los multiplicamos y el resultado tendrá signo positivo.

3 \cdot 3 = 9

Ejemplo 6

Para efectuar el producto (-2) \cdot 5, el signo de ambos factores distinto, así que los multiplicamos y el resultado tendrá signo negativo.

(-2) \cdot 5 = - ( 2 \cdot 5 ) = -10

Ejemplo 7

Para efectuar el producto 6 \cdot (-3), el signo de ambos factores distinto, así que los multiplicamos y el resultado tendrá signo negativo.

6 \cdot (-3) = - (6 \cdot 3) = -18

Ejemplo 8

Para efectuar el producto (-4) \cdot (-8), el signo de ambos factores es negativo, así que los multiplicamos y el resultado tendrá signo positivo.

(-4) \cdot (-8) = (4 \cdot 8) = 32


Definiendo los números enteros podemos encontrar una respuesta al problema que no se nos presentó cuando restábamos números naturales, pero aún nos queda una pregunta por responder sobre los números naturales y que se aplica también a los números enteros: ¿Qué sucede si dividimos dos números enteros? Debemos entonces definir los Números Racionales.


Números Naturales

  1. ¿Cuál es la «naturaleza» de los números naturales?
  2. Operaciones entre números naturales
    1. La suma de números naturales
    2. El producto entre números naturales
  3. Conjunto cerrado respecto a una operación
    1. La resta de números naturales
    2. La división entre números naturales

¿Cuál es la «naturaleza» de los números naturales?

Los números naturales son aquellos que aprendemos de forma natural contando los dedos de nuestras manos, caramelos, platos en una mesa, pelotas en una caja, billetes, etc; es decir, todos los números que podamos usar para representar una cantidad de objetos.

Empezando por el 1, definimos cada uno de los siguientes términos como el anterior, sumándole 1. Denotaremos el conjunto de los números naturales con con el símbolo \mathbb{N} y lo definiremos extensivamente de la siguiente manera:

\mathbb{N} = \{1,2,3,4,5,6,7,8,9,\ldots\}

Este conjunto continúa de manera indefinida sumando siempre 1 al número anterior, es por eso que usamos tres puntos suspensivos al definirlo de forma extensiva. También será posible representar este conjunto gráficamente, disponiendo cada elemento de forma ordenada en una recta, así

Representación gráfica de los números naturales. Una línea recta con números demarcados de forma perpendicular. | totuma.com

También pudiera interesarte

Operaciones entre números naturales

La suma de números naturales

Es posible definir operaciones entre números naturales, de forma intuitiva, un número natural representa una cantidad de objetos, entonces usaremos la suma para representar la cantidad de total de objetos que tendríamos al juntar distintos grupos de objetos. Por ejemplo, si se tiene una bolsa con tres objetos y otra bolsa con nueve objetos; y se guarda el contenido de ambas en una caja, se tendrá un total de doce objetos en la caja.

En general si se tienen dos números naturales, se pueden sumar y obtener otro número natural. La suma se denotará con el signo «+» y se lee más. Además, podemos establecer una relación entre la suma de dos números naturales y otro número natural a través de una igualdad usando el signo «=» que se lee igual que o igual a. Retomando el último ejemplo, podemos decir que

3 + 9 = 12
tres más nueve es igual a doce

El producto entre números naturales

Por otra parte si se tiene una cantidad de objetos y esta cantidad se repite un número de veces, entonces el producto (o multiplicación) nos representará la cantidad total de objetos que se obtendrá al agruparlos todos. Por ejemplo, si se tienen tres paquetes de caramelos y cada paquete tiene diez caramelos, en total se tendrán treinta caramelos.

En general si se tienen dos números naturales, se pueden multiplicar y obtener otro número natural. El producto se denotará con el signo » \cdot » (en algunos casos se usa «\times«) y se lee por. A cada uno de los términos involucrados en un producto los llamaremos factores. Retomando el último ejemplo, podemos decir que

3 \cdot 10 = 30
tres por diez es igual a treinta




Conjunto cerrado respecto a una operación

Decimos que un conjunto es cerrado respecto a la suma, si al efectuar la suma entre dos elementos del conjunto, el resultado estará contenido en el conjunto. Por ejemplo, el conjunto de los números naturales es cerrado respecto a la suma, pues al sumar dos números naturales, el resultado es un número natural.

Decimos que un conjunto es cerrado respecto al producto, si al efectuar el producto entre dos elementos del conjunto, el resultado estará contenido en el conjunto. Por ejemplo, el conjunto de los números naturales es cerrado respecto al producto, pues al multiplicar dos números naturales, el resultado es un número natural.

De forma genera, diremos que un conjunto es cerrado respecto a una operación, si al efectuar dicha operación entre dos elementos del conjunto, el resultado estará contenido en el conjunto.

La resta de números naturales

Un número natural representa una cantidad de objetos, entonces usaremos la resta para representar la cantidad de total de objetos que tendríamos al juntar retirar una cantidad de objetos de un conjunto de objetos. Por ejemplo, si se tiene una bolsa con quince objetos y de esta bolsa se retiran seis objetos; dentro de la bolsa, habrá un total de nueve objetos.

En ocasiones, si se tienen dos números naturales, se pueden restar y obtener otro número natural. La resta se denotará con el signo «-» y se lee menos. Además, podemos establecer una relación entre la resta de dos números naturales y otro número natural a través de una igualdad usando el signo «=» que se lee igual que o igual a. Retomando el último ejemplo, podemos decir que

15 - 6 = 9
quince menos seis es igual a nueve

Sin embargo, el conjunto de los números naturales no es cerrado respecto a la resta, pues la resta de dos números naturales no siempre resulta en otro número natural. Por ejemplo, ¿cuál es el resultado de restar siete menos siete? ¿Cuál es el resultado de restar cinco menos veinte?



La división entre números naturales

Un número natural representa una cantidad de objetos, entonces usaremos la división para representar la forma equitativa en que podemos repartir esta cantidad de objetos. Por ejemplo, si se tienen dieciocho objetos y estos se guardan de forma equitativa en tres cajas; dentro de cada caja, habrá un total de seis objetos en cada caja.

En ocasiones, si se tienen dos números naturales, se pueden dividir y obtener otro número natural. La resta se denotará con el signo «÷» y se lee dividido entre. Además, podemos establecer una relación entre la división de dos números naturales y otro número natural a través de una igualdad usando el signo «=» que se lee igual que o igual a. Retomando el último ejemplo, podemos decir que

18 \div 6 = 3
dieciocho dividido entre seis es igual a tres

Sin embargo, el conjunto de los números naturales no es cerrado respecto a la división, pues la división de dos números naturales no siempre resulta en otro número natural. Por ejemplo, ¿cuál es el resultado de dividir uno menos dos? ¿Cuál es el resultado de restar trece entre cuatro?


Hemos visto que el conjunto de los números naturales no es cerrado respecto a la resta ni a la división, entonces, es necesario definir un nuevo conjunto que sea cerrado respecto a la resta.