Indeterminación Infinito sobre Infinito ∞/∞ (1 de 2)

La Indeterminación \frac{\infty}{\infty}

Si f(x) y g(x) son dos funciones cuyos límites tienden a infinito cuando x tiende al infinito, entonces el límite de la división entre estas dos funciones presenta una indeterminación

\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{\infty}{\infty}

Consideremos de forma particular en el que P(x) y Q(x) son funciones polinomiales que tienden a infinito cuando x tiende a infinito. El método para determinar este tipo de límites consiste en dividir por x^n en el numerador y en el denominador, donde n es el mayor grado involucrado en el límite. Veamos con algunos ejemplos como desarrollar este método.

También pudiera interesarte

Ejemplos

Ejemplo 1

Si consideramos \lim_{x \to \infty} \frac{x^2 - 1}{2x + 1} = \frac{\infty}{\infty}, este límite presenta una indeterminación pero considerando que 2 es el mayor grado involucrado en el límite, entonces dividimos en el numerador y en el denominador por x^2.

\lim_{x \to \infty} \dfrac{\frac{x^2 - 1}{x^2}}{\frac{2x + 1}{x^2}}

Una vez que hemos dividido, separamos la suma en los numeradores de cada fracción de la siguiente forma

\lim_{x \to \infty} \dfrac{\frac{x^2}{x^2} - \frac{1}{x^2}}{\frac{2x}{x^2} + \frac{1}{x^2}}

Simplificamos entonces cada una de las fracciones generadas, para obtener

\lim_{x \to \infty} \dfrac{1 - \frac{1}{x^2}}{\frac{2}{x} + \frac{1}{x^2}}

Calculamos entonces el límite de cada uno de los sumandos involucrados, teniendo en cuenta que \lim_{x \to \infty} \frac{1}{x^2} = \frac{1}{\infty} = 0, \lim_{x \to \infty} \frac{2}{x} = \frac{2}{\infty} = 0, así el límite será igual a

\frac{1 - 0}{0 + 0} = \frac{1}{0} = \infty

Donde la fracción \frac{1}{0} servirá como indicador de que el numerador crece con mayor velocidad que el denominador, por lo tanto concluimos que \lim_{x \to \infty} \frac{x^2 - 1}{2x + 1} = \infty.

Ejemplo 2

\item Si consideramos \lim_{x \to \infty} \frac{x^3 - x + 4}{4x^3 + 6x^2 +10} = \frac{\infty}{\infty}, este límite presenta una indeterminación pero considerando que 3 es el mayor grado involucrado en el límite, entonces dividimos en el numerador y en el denominador por x^3.

\lim_{x \to \infty} \dfrac{\frac{x^3 - x + 4}{x^3}}{\frac{4x^3 + 6x^2 +10}{x^3}}

Una vez que hemos dividido, separamos la suma en los numeradores de cada fracción de la siguiente forma

\lim_{x \to \infty} \dfrac{\frac{x^3}{x^3} - \frac{x}{x^3} + \frac{4}{x^3}}{\frac{4x^3}{x^3} + \frac{6x^2}{x^3} + \frac{10}{x^3}}

Simplificamos entonces cada una de las fracciones generadas, para obtener

\lim_{x \to \infty} \dfrac{1 - \frac{1}{x^2} + \frac{4}{x^3}}{4 + \frac{6}{x} + \frac{10}{x^3}}

Calculamos entonces el límite de cada uno de los sumandos involucrados, teniendo en cuenta que \lim_{x \to \infty} \frac{a}{\infty} = 0, así el límite será igual a

\dfrac{1 - 0 + 0}{4 + 0 + 0} = \dfrac{1}{4}

Por lo tanto concluimos que \lim_{x \to \infty} \frac{x^3 - x + 4}{4x^3 + 6x^2 +10} = \frac{1}{4} .

Ejemplo 3

Si consideramos \lim_{x \to \infty} \frac{3x^2 - 2x - 7}{4x^4 - 9x^2 + 2} = \frac{\infty}{\infty}, este límite presenta una indeterminación pero considerando que 4 es el mayor grado involucrado en el límite, entonces dividimos en el numerador y en el denominador por x^3.

\lim_{x \to \infty} \dfrac{\frac{3x^2 - 2x - 7}{x^4}}{\frac{12x^4 - 9x^2 + 2}{x^4}}

Una vez que hemos dividido, separamos la suma en los numeradores de cada fracción de la siguiente forma

\lim_{x \to \infty} \dfrac{\frac{3x^2}{x^4} - \frac{2x}{x^4} - \frac{7}{x^4}}{\frac{12x^4}{x^4} - \frac{9x^2}{x^4} + \frac{2}{x^4}}

Simplificamos entonces cada una de las fracciones generadas, para obtener

\lim_{x \to \infty} \dfrac{\frac{3}{x^2} - \frac{2}{x^3} - \frac{7}{x^4} }{12 - \frac{9}{x^2} + \frac{2}{x^4}}

Calculamos entonces el límite de cada uno de los sumandos involucrados, teniendo en cuenta que \lim_{x \to \infty} \frac{a}{\infty} = 0, así el límite será igual a

\dfrac{0 - 0 - 0}{12 + 0 + 0} = \dfrac{0}{12} = 0

Donde la fracción \frac{0}{12} servirá como indicador de que el denominador crece con mayor velocidad que el numerador, por lo tanto concluimos que \lim_{x \to \infty} \frac{3x^2 - 2x - 7}{4x^4 - 9x^2 + 2} = 0 .

Anuncios

La regla general

Considerando estos tres últimos ejemplos, podemos notar que si consideramos dos polinomios que están definidos de la siguiente forma:

P(x) = a_m x^m + \ldots + a_1 x + a_0
Q(x) = b_n x^n + \ldots + b_1 x + b_0

Entonces, el límite de la división \frac{P(x)}{Q(x)} cuando x tiende a infinito estará determinado de la siguiente forma:

  • Será igual a \infty si m>n.
    Esto quiere decir que el grado del polinomio en el numerador es mayor que el grado del polinomio en el numerador, por lo tanto el numerador crece con mayor velocidad.
  • Será igual a \frac{a_m}{b_n} si m=n.
    Esto quiere decir que el grado del polinomio en el numerador es igual que el grado del polinomio en el numerador, por lo tanto ambos crecen a la misma velocidad.
  • Será igual a 0 si m<n.
    Esto quiere decir que el grado del polinomio en el denominador es mayor que el grado del polinomio en el numerador, por lo tanto el denominador crece con mayor velocidad.

Grado de una función

  1. El grado de un polinomio
  2. El grado de una función algebraicas
  3. El grado de una función trascendente
  4. El grado de operaciones entre funciones
  5. Ejemplos
    1. Ejemplo 1
    2. Ejemplo 2
    3. Ejemplo 3
    4. Ejemplo 4
    5. Ejemplo 5
    6. Ejemplo 6
    7. Ejemplo 7
    8. Ejemplo 8

El grado de un polinomio

Habiendo definido los polinomios, es posible definir funciones a partir de ellos. Formalmente, definimos una función polinómica como una función P: \mathbb{R} \longrightarrow \mathbb{R} de la siguiente forma:

\displaystyle P(x) = a_{n} x^{n} + a_{n-1} x^{n-1} + \ldots + a_{2} x^{2}+ a_{1} x + a_{0}

A los números a_0, a_1, a_2, \ldots , a_n los llamaremos coeficientes del polinomio, a_n será el coeficiente principal y a_0 será el término independiente.

Definimos el grado de la función polinómica P(x) como el mayor exponente n involucrado. En algunos textos se denota con la expresión gr(P), d(P) ó deg(P).

La importancia del grado del polinomio radica en que éste determina la velocidad con la que crecerá a medida que crece la variable x y aunque aún no tenemos las herramientas para graficar otro tipo de funciones que no sean elementales, podemos anunciar que las formas gráficas de los polinomios también variarán dependiendo de su grado, consideremos las siguientes funciones:

También pudiera interesarte

El grado de una función algebraicas

La idea del grado de un polinomio se puede generalizar a cualquier tipo de funciones algebraicas. Particularmente, si consideramos las funciones que involucran radicales como la función raíz cuadrada o raíz cúbica, diremos que el grado vendrá dado el índice de la raíz. Si consideramos una función de la forma

f(x) = \sqrt[n]{x} = x^{\frac{1}{n}}

Entonces, diremos que su grado es \frac{1}{n}. Más aún, si P(x) es una función algebraica de grado m entonces si consideramos la función

f(x) = \sqrt[n]{P(x)}

Entonces el grado de la función f(x) es igual a \frac{m}{n}.



El grado de una función trascendente

Al considerar funciones transcendentales, particularmente la función exponencial y la función logarítmica, estas tendrán un comportamiento muy específico respecto a las funciones algebraicas:

El grado de la función exponencial será mayor que el grado de cualquier función algebraica, es decir, crecerá más rápido que cualquier función algebraica. Aunque en algunos textos se dice que tiene grado infinito, diremos que tiene grado exponencial.

El grado de la función logarítmica será menor que el grado de cualquier función de grado positivo, es decir, crecerá más lento que cualquier función algebraica de grado positivo. Aunque en algunos textos se dice que tiene grado cero, diremos que tiene grado logarítmico.

El siguiente gráfico permite ilustrar la rapidez con la que crece una función dependiendo de su grado:



El grado de operaciones entre funciones

Es posible definir el grado de operaciones básicas entre funciones tomando las siguientes consideraciones:

El grado de la suma de dos funciones será el grado de la función con mayor grado. Formalmente, al considerar P(x) una función algebraica de grado m y Q(x) una función algebraica de grado n, con m>n, entonces el grado de f(x) \pm g(x) es igual a m.

El grado del producto de dos funciones será la suma de los grados. Formalmente, al considerar P(x) una función algebraica de grado m y Q(x) una función algebraica de grado n, entonces el grado de f(x) \cdot g(x) es igual a m + n.

El grado del cociente entre dos funciones será la resta del grado de la función en el numerador menos el grado de la función en el denominador. Formalmente, al considerar f(x) una función de grado m y g(x) \neq 0 una función de grado n, entonces el grado de \frac{f(x)}{g(x)} es igual a m - n.

Veamos con algunos ejemplos como determinar el grado de algunas funciones.



Ejemplos

Ejemplo 1

El grado de la función f(x) = x^3 + 5x^2 + 3x + 1 es igual a 3 pues el mayor grado involucrado.

Ejemplo 2

El grado de la función f(x) = \sqrt{x} + x - 8 es igual a 1 pues es el mayor grado involucrado.

Ejemplo 3

El grado de la función f(x) = \sqrt{x^3 + 2} - 3x - 8 es igual a \frac{3}{2} pues es el mayor grado involucrado.

Ejemplo 4

El grado de la función f(x) = \frac{x}{3} + 6\ln(x) es igual a 1 pues es el mayor grado involucrado.

Ejemplo 5

El grado de la función f(x) = x^5 \cdot \sqrt[3]{x-7} + 9 es igual a \frac{8}{3} pues es la suma de los grados 5 + \frac{1}{3}

Ejemplo 6

El grado de la función f(x) = 2\text{\large e}^x \cdot x + x^2 -11 es exponencial pues al multiplicar cualquier función por la función exponencial, su grado sigue siendo exponencial.

Ejemplo 7

El grado de la función f(x) = \frac{x + 1}{x^3 - 2} + 13 es -2 pues es la resta de los grados 1-3

Ejemplo 8

El grado de la función f(x) = \frac{7}{x} + 9\ln(x) es logarítmico pues el grado de la primera función es -1 y el grado logarítmico es mayor que cualquier grado negativo.


Operaciones e Indeterminaciones en el infinito

  1. Suma
  2. Producto
  3. División
  4. Potencias
  5. Ejemplos
    1. Ejemplo 1
    2. Ejemplo 2
    3. Ejemplo 3
    4. Ejemplo 4
    5. Ejemplo 5
    6. Ejemplo 6

Así como hemos podido definir límites finitos de las operaciones básicas entre funciones separando los límites, también será posible definir las operaciones básicas entre límites infinitos teniendo algunas consideraciones. Si f(x) y g(x) son dos funciones cuyos límites tienden a infinito cuando x tiende al infinito; a(x) es una función que tiende a la constante a_0 \neq 0 cuando x tiende a infinito y b(x) es una función que tiende cero cuando x tiende a infinito; entonces veamos qué indeterminaciones conseguimos al considerar las siguientes operaciones:

También pudiera interesarte

Suma

Sumas, restas e indeterminaciones en el infinito | totumat.com

La resta de infinitos está indeterminada, porque aunque la noción de infinito se usa para denotar números muy grandes, no necesariamente representan el mismo número. También hay que considerar que hay funciones que crecen de forma distinta respecto a otras, por lo que al considerar la resta entre ellas, hay que estudiar cual de las dos crece con mayor rapidez.

Producto

Productos e indeterminaciones en el infinito | totumat.com

El producto de cero por infinito está indeterminado. Hay que considerar que hay funciones que crecen o decrecen de forma distinta respecto a otras, por lo que al considerar el producto entre ellas, hay que estudiar cual de las dos crece o decrece con mayor rapidez.



División

División e indeterminaciones en el infinito | totumat.com

La división entre infinitos está indeterminada, porque aunque la noción de infinito se usa para denotar números muy grandes, no necesariamente representan el mismo número. También hay que considerar que hay funciones que crecen de forma distinta respecto a otras, por lo que al considerar la división entre ellas, hay que estudiar cual de las dos crece con mayor rapidez. De igual forma, la división de cero entre infinito o infinito entre cero está indeterminada pues se debe considerar que hay funciones que crecen o decrecen de forma distinta respecto a otras, por lo que al considerar la división entre ellas, hay que estudiar cual de las dos crece o decrece con mayor rapidez.

Potencias

Potencias e indeterminaciones en el infinito | totumat.com

La expresión uno a la infinito está indeterminada, la expresión infinito a la cero está indeterminada, la expresión cero a la infinito está indeterminada, intuitivamente lo que ocurre es que si se multiplica un número mayor que uno por él mismo de forma indefinida, este producto tenderá hacia al infinito; si se multiplica un número mayor que uno por él mismo de forma indefinida de forma indefinida, este producto tenderá hacia cero; si se multiplica el número uno por él mismo de forma indefinida, este producto será siempre igual a uno. Pero cuando una expresión tiende a uno se multiplica por ella misma de forma indefinida, ¿hacia donde tiende? ¿A cero? ¿A uno? ¿A infinito?

De esta lista de operaciones, se han etiquetado con (IND) los límites indeterminados, más adelante veremos cuales son las técnicas para determinarlos. Por ahora, veamos con algunos ejemplos como calcular este tipo de límites infinitos que no presentan problemas de determinación.



Ejemplos

Ejemplo 1

Considere la función f(x) = x + 5, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} x + 5 = \infty + 5 = \infty

Ejemplo 2

Considere la función f(x) = 3x^2 - 12, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} 3x^2 - 12 = 3 \cdot (\infty)^2 - 12 = 3 \cdot \infty - 12 = \infty - 12 = \infty

Ejemplo 3

Considere la función f(x) = 4x^3 + 6(x-14)^2 + 9, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} 4x^3 + 6(x-14)^2 + 9 = 4(\infty)^3 + 6(\infty)^2 + 9 = 4 \cdot \infty + 6 \cdot \infty + 9 = \infty



Ejemplo 4

Considere la función f(x) = \frac{1}{x} - \frac{3}{x} + 7, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} \frac{1}{x} - \frac{3}{x+1} + 7 = \frac{1}{\infty} - \frac{3}{\infty} + 7 = 0 + 0+ 7 = 7

Ejemplo 5

Considere la función f(x) = \sqrt{x} + \frac{11}{4x} + \sqrt[5]{x+3}, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} \sqrt{x} + \frac{11}{4x} + \sqrt[5]{x+3} = \sqrt{\infty} + \frac{11}{4 \cdot \infty} + \sqrt[5]{\infty+3} = \infty + 0 + \infty = \infty

Ejemplo 6

Considere la función f(x) = (x+2)^{x^2-6}, calcule su límite cuando x tiende a infinito.

\lim_{x \to \infty} (x+2)^{x^2-6} = (\infty+2)^{\infty^2-6}  = \infty^{\infty} = \infty