Ecuaciones Exponenciales

Al estudiar las propiedades de las potencias, resulta de particular interés el caso en que fijamos la base y variamos el exponente, a las expresiones que definen este tipo de situaciones las llamamos expresiones exponenciales. Formalmente, si consideramos un valor desconocido x y una base a, entonces

a^{x}

Será una expresión exponencial de base a. De forma particular, si consideramos a=2 tendríamos una expresión exponencial de base dos expresada de la siguiente forma

2^{x}

Las expresiones exponenciales cumplirán con las mismas propiedades que se han definido para las potencias, pero el caso interesante resulta cuando establecemos igualdades que involucran expresiones exponenciales, pues si consideramos la siguiente ecuación

a^x = b

Diremos que esta es una ecuación exponencial y debemos desarrollar un método que nos permita calcular la solución de este tipo de ecuaciones. Particularmente, si consideramos la ecuación

2^x = 8

La solución salta a la vista, pues sabiendo que dos elevado al cubo es igual a ocho, entonces concluimos que el valor de x que satisface la igualdad es x=3. Sin embargo, la solución no siempre será tan clara, así que debemos recurrir a las propiedades de las potencias para poder encontrar la solución.

Veamos como aplicar las propiedades de las potencias para calcular la solución de algunas ecuaciones exponenciales.

Anuncios

Ejemplos

Ejemplo 1

Calcule la solución de la siguiente ecuación exponencial:

3^x = 81

Si bien, la solución de esta ecuación se puede deducir de forma inmediata, una de las técnicas para calcular este tipo de ecuaciones es descomponer los números involucrados como productos de factores primos. Entonces, descomponiendo 27, tenemos que

3^x = 3^4

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

x = 4

Ejemplo 2

Calcule la solución de la siguiente ecuación exponencial:

5^{x+1} = 125

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo 125, tenemos que

5^{x+1} = 5^3

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

x+1 = 3 \Rightarrow x = 3 -1 \Rightarrow x = 2

Anuncios

Ejemplo 3

Calcule la solución de la siguiente ecuación exponencial:

4 \cdot 2^x = 128

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo 128, tenemos que

2^2 \cdot 2^x = 2^7

Al multiplicar factores que tienen la misma base, sumamos los exponentes

2^{2+x} = 2^7

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

2+x = 7 \Rightarrow x = 7 - 2 \Rightarrow x = 5

Ejemplo 4

Calcule la solución de la siguiente ecuación exponencial:

49^x \cdot 7^5 = 343

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo 128, tenemos que

\left(7^2 \right)^x \cdot 7^5 = 7^3

Si tenemos una expresión elevada a un exponente, y a su vez, esta está elevada a otro exponente, multiplicamos los exponentes

7^{2x} \cdot 7^5 = 7^3

Al multiplicar factores que tienen la misma base, sumamos los exponentes

7^{2x+5} = 7^3

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

2x+5 = 3 \Rightarrow 2x = 3 - 5 \Rightarrow 2x = -2 \Rightarrow x = -\frac{2}{2} \Rightarrow x = -1

Anuncios

Ejemplo 5

Calcule la solución de la siguiente ecuación exponencial:

49^x \cdot 7^5 = 343

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo 128, tenemos que

\left(7^2 \right)^x \cdot 7^5 = 7^3

Si tenemos una expresión elevada a un exponente, y a su vez, esta está elevada a otro exponente, multiplicamos los exponentes

7^{2x} \cdot 7^5 = 7^3

Al multiplicar factores que tienen la misma base, sumamos los exponentes

7^{2x+5} = 7^3

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

2x+5 = 3 \Rightarrow 2x = 3 - 5 \Rightarrow 2x = -2 \Rightarrow x = -\frac{2}{2} \Rightarrow x = -1

Ejemplo 6

Calcule la solución de la siguiente ecuación exponencial:

81^x \cdot 9^4 = 27^x \cdot 3^2

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo 128, tenemos que

\left( 3^4 \right)^x \cdot \left( 3^2 \right)^4 = \left( 3^3 \right)^x \cdot 3^2

Si tenemos una expresión elevada a un exponente, y a su vez, esta está elevada a otro exponente, multiplicamos los exponentes

3^{4x} \cdot 3^{8} = 3^{3x} \cdot 3^2

Al multiplicar factores que tienen la misma base, sumamos los exponentes

3^{4x+8} = 3^{3x+2}

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

4x+8 = 3x+2 \Rightarrow 4x - 3x = 2 - 8 \Rightarrow x = -6

Anuncios

Ejemplo 7

Calcule la solución de la siguiente ecuación exponencial:

8^x \cdot \frac{1}{16} = \frac{1}{32^x} \cdot 4^5

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo $128$, tenemos que

\left( 2^3 \right)^x \cdot \frac{1}{2^4} = \frac{1}{\left( 2^5 \right)^x} \cdot \left( 2^2 \right)^5

Si tenemos una expresión elevada a un exponente, y a su vez, esta está elevada a otro exponente, multiplicamos los exponentes. Además, aquellos elementos que están el denominador los podemos reescribir como numeradores cambiando el signo del exponente

2^{3x} \cdot 2^{-4} = 2^{-5x} \cdot 2^{10}

Al multiplicar factores que tienen la misma base, sumamos los exponentes

2^{3x-4} = 2^{-5x+10}

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

3x-4 = -5x+10 \Rightarrow 3x + 5x = 10 + 4 \Rightarrow 8x = 14 \Rightarrow x = \frac{7}{4}


Propiedades de las Potencias

A continuación se presentará una lista de algunas propiedades de la potencia de un número, del producto y la división. Sean a y b números reales; m y n números naturales, entonces

1. a^0 = 1, todo número elevado a la cero es igual a uno, esto aplica incluso si a=0.

2. a^1 = a, todo número real se puede expresar con exponente.

3. a^m \cdot a^n = a^{m+n}, al multiplicar dos números que tienen la misma base, mantenemos la misma base y sumamos los exponentes. Esto se debe a que

a^m \cdot a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{m-veces} \cdot \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-veces} = \underbrace{a \cdot a \cdot \ldots \cdot a}_{(m+n)-veces}

4. (a^m)^n = a^{m \cdot n}, si tenemos un número elevado a una potencias y a su vez esta expresión está elevada a una potencias, entonces multiplicamos las potencias. Esto se debe a

(a^m)^n = \underbrace{a^m \cdot a^m \cdot \ldots \cdot a^m}_{n-veces} = a^{\overbrace{m+m+\ldots+m}^{n-veces}} = a^{m \cdot n}

5. (a \cdot b)^n = a^n \cdot b^n, si un producto está elevado a una potencia, podemos distribuir el exponente entre cada uno de los elementos del producto. Esto se debe a

(a \cdot b)^n = \underbrace{(a \cdot b) \cdot (a \cdot b) \cdot \ldots \cdot (a \cdot b)}_{n-veces} = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-veces} \cdot \underbrace{b \cdot b \cdot \ldots \cdot b}_{n-veces} = a^n \cdot b^n

También pudiera interesarte

6. a^{-1} = \dfrac{1}{a}, \ a \neq 0, el inverso multiplicativo de todo número distinto de cero se puede expresar como el número con exponente menos uno (-1) o como el cociente de uno entre ese número.

7. a^{-n} = \dfrac{1}{a^n}, \ a \neq 0, todo número distinto de cero con una potencia negativa, se puede reescribir como uno sobre el mismo número pero con potencia positiva.

8. \dfrac{a^m}{a^n} = a^{m-n}, \ a \neq 0, al dividir dos números que tienen la misma base, mantenemos la misma base y restamos los exponentes, el exponente de arriba menos el de abajo. Supongamos que m > n para entender esta idea, entonces, esto se debe a que

\dfrac{a^m}{a^n} = \dfrac{\overbrace{a \cdot a \cdot \ldots \cdot a}^{m-veces} }{ \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-veces}} = \dfrac{\overbrace{a \cdot a \cdot \ldots \cdot a}^{n-veces} }{ \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-veces}} \cdot \dfrac{\overbrace{a \cdot a \cdot \ldots \cdot a}^{(m-n)-veces}}{1} = a^{m-n}

9. \dfrac{a^m}{a^n} = \dfrac{1}{a^{n-m}}, \ a \neq 0, al dividir dos números que tienen la misma base, mantenemos la misma base en el denominador y restamos los exponentes, el exponente de abajo menos el de arriba. Supongamos que m < n para entender esta idea, entonces, esto se debe a que

\dfrac{a^m}{a^n} = \dfrac{\overbrace{a \cdot a \cdot \ldots \cdot a}^{m-veces} }{ \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-veces}} = \dfrac{\overbrace{a \cdot a \cdot \ldots \cdot a}^{m-veces} }{ \underbrace{a \cdot a \cdot \ldots \cdot a}_{m-veces}} \cdot \dfrac{1}{\underbrace{a \cdot a \cdot \ldots \cdot a}_{(n-m)-veces}} = \dfrac{1}{a^{n-m}}

10. \left( \dfrac{a}{b} \right)^n = \dfrac{a^n}{b^n}, \ b \neq 0, si un cociente está elevado a una potencia, podemos distribuir el exponente entre cada uno de los elementos del cociente. Esto se debe a

\left( \dfrac{a}{b} \right)^n = \underbrace{\dfrac{a}{b} \cdot \dfrac{a}{b} \cdot \ldots \cdot \dfrac{a}{b}}_{n-veces} = \dfrac{ \overbrace{a \cdot a \cdot \ldots \cdot a}^{n-veces} }{ \underbrace{b \cdot b \cdot \ldots \cdot b}_{n-veces}} = \dfrac{a^n}{b^n}


Esta lista es citada por algunos autores como la Ley de las Potencias o Ley de los Exponentes, pero estas en realidad, son propiedades que se deducen del producto entre números reales. De forma resumida, tenemos que

Lista de las Propiedades de las Potencias

a^0 = 1

a^1 = a

a^m \cdot a^n = a^{m+n}

(a^m)^n = a^{m \cdot n}

(a \cdot b)^n = a^n \cdot b^n

a^{-1} = \dfrac{1}{a}, \ a \neq 0

\left( \dfrac{a}{b} \right)^{-1} = \dfrac{b}{a}, \ a,b \neq 0

a^{-n} = \dfrac{1}{a^n}, \ a \neq 0

\dfrac{a^m}{a^n} = a^{m-n}, \ a \neq 0

\dfrac{a^m}{a^n} = \dfrac{1}{a^{n-m}}, \ a \neq 0

\left( \dfrac{a}{b} \right)^n = \dfrac{a^n}{b^n}, \ b \neq 0

Estas propiedades se pueden usar para simplificar o expandir expresiones algebraicas, es decir, aquellas que se expresan como suma, resta, producto y división de números reales. Veamos en los siguientes ejemplos cómo usar estas propiedades.

Anuncios

Ejemplos

Ejemplo 1

Simplifique la expresión 2^2 \cdot 2^3 usando únicamente las propiedades de las potencias.

Notamos que los factores involucrados tienen la misma base, por lo tanto, podemos sumar sus exponentes,

2^7 \cdot 2^3 = 2^{7+3} = 2^{10}

Ejemplo 2

Simplifique la expresión 3^4 \cdot 3 usando únicamente las propiedades de las potencias.

Notamos que los factores involucrados tienen la misma base, por lo tanto, podemos sumar sus exponentes considerando que 3 = 3^1,

3^4 \cdot 3^1 = 3^{4+1} = 3^5

Ejemplo 3

Simplifique la expresión 9^5 \cdot 9^2 \cdot 9^{10} usando únicamente las propiedades de las potencias.

Notamos que los factores involucrados tienen la misma base, por lo tanto, podemos sumar sus exponentes,

9^5 \cdot 9^2 \cdot 9 = 9^{5+2+1} = 9^{8}

Finalmente, podemos descomponer el número 9 en factores primos para obtener que

9^{8} = \left( 3^2 \right)^{8} = 3^{2 \cdot 8} = 3^{16}

Ejemplo 4

Simplifique la expresión 3^{4} \cdot 3^{2} \cdot 5^{6} usando únicamente las propiedades de las potencias.

Sumamos los exponentes de los factores con la misma base,

3^4 \cdot 3^2 \cdot 5^{6} = 3^{4+2} \cdot 5^{6} = 3^{6} \cdot 5^{6}

Como ambas bases tienen el mismo exponente, podemos agrupar ambas bases bajo el mismo exponente,

3^{6} \cdot 5^{6} = \left( 3 \cdot 5 \right)^{6}

Anuncios

Ejemplo 5

Simplifique la expresión \left( 7^{9} \cdot 7^{-2} \cdot 7^{5} \right)^{2} usando únicamente las propiedades de las potencias.

Sumamos los exponentes de los factores con la misma base,

\left( 7^{9} \cdot 7^{-2} \cdot 7^{5} \right)^{2} = \left( 7^{9-2+5} \right)^{2} = \left( 7^{12} \right)^{2}

Multiplicamos el exponente que está fuera del paréntesis con el exponente que está dentro del paréntesis

\left( 7^{12} \right)^{2} =7^{12 \cdot 2} = 7^{24}

Ejemplo 6

Simplifique la expresión \frac{2^5}{2^3} usando únicamente las propiedades de las potencias.

Notamos que los elementos involucrados tienen la misma base, por lo tanto, podemos restar sus exponentes,

\frac{2^5}{2^3} = 2^{5-3} = 2^{2}

Ejemplo 7

Simplifique la expresión \frac{4^{7} \cdot 3^{-15} \cdot 3^{4}}{4^{3} \cdot 4^{5} \cdot 3^{-20}} usando únicamente las propiedades de las potencias.

Sumamos los exponentes de los factores con la misma base,

\frac{4^{7} \cdot 3^{-15} \cdot 3^{4}}{4^{3} \cdot 4^{5} \cdot 3^{-20}} = \frac{4^{7} \cdot 3^{-15+4}}{4^{3+5} \cdot 3^{-20}} = \frac{4^{7} \cdot 3^{-11}}{4^{8} \cdot 3^{-20}}

Separamos las fracciones para agrupar las divisiones que tienen la misma base

\frac{4^{7} \cdot 3^{-11}}{4^{8} \cdot 3^{-20}} = \frac{4^{7}}{4^{8}} \cdot \frac{3^{-11}}{3^{-20}}

Restamos los exponentes de los factores con la misma base,

\frac{4^{7}}{4^{8}} \cdot \frac{3^{-11}}{3^{-20}} = 4^{7-8} \cdot 3^{-11-(-20)} = 4^{-1} \cdot 3^{9}

Descomponemos el número 4 en factores primos para obtener que

\left( 2^2 \right)^{-1} \cdot 3^{9} = 2^{-2} \cdot 3^{9}

Finalmente, podemos reescribir la expresión 2^{-2} como \frac{1}{2^{2}} para obtener la siguiente fracción

2^{-2} \cdot 3^{9} = \frac{1}{2^2} \cdot 3^{9} = \frac{3^9}{2^2}

Anuncios

Ejemplo 8

Efectúe la operación \left( -\frac{5}{2} \right)^2 usando la definición de potencia y las operaciones entre números racionales.

Debemos tomar en cuenta que si elevamos un número al cuadrado, esto es multiplicar un número por él mismo, dos veces. Entonces,

\left( -\frac{5}{2} \right)^2 = \left( -\frac{5}{2} \right) \cdot \left( -\frac{5}{2} \right)

Por otra parte, la fracción -\frac{5}{2} se puede reescribir como \frac{-5}{2}, entonces podemos reescribir este producto de la siguiente forma:

\left( -\frac{5}{2} \right) \cdot \left( -\frac{5}{2} \right) = \frac{-5}{2} \cdot \frac{-5}{2}

Finalmente, podemos efectuar el producto de las fracciones y recurriendo a la ley de los signos en el numerador, obtenemos lo siguiente:

\frac{(-5) \cdot (-5)}{2 \cdot 2} = \frac{25}{4}

Ejemplo 9

Efectúe la operación \left( -\frac{2}{3} \right)^3 usando la definición de potencia y las operaciones entre números racionales.

Debemos tomar en cuenta que si elevamos un número al cubo, esto es multiplicar un número por él mismo, tres veces. Entonces,

\left( -\frac{2}{3} \right)^3 = \left( -\frac{2}{3} \right) \cdot \left( -\frac{2}{3} \right) \cdot \left( -\frac{2}{3} \right)

Por otra parte, la fracción -\frac{2}{3} se puede reescribir como \frac{-2}{3}, , entonces podemos reescribir este producto de la siguiente forma:

\left( -\frac{2}{3} \right) \cdot \left( -\frac{2}{3} \right) \cdot \left( -\frac{2}{3} \right) = \frac{-2}{3} \cdot \frac{-2}{3} \cdot \frac{-2}{3}

Finalmente, podemos efectuar el producto de las fracciones y recurriendo a la ley de los signos en el numerador, obtenemos lo siguiente:

\frac{(-2) \cdot (-2) \cdot (-2)}{3 \cdot 3 \cdot 3} = \frac{-8}{27} = - \frac{8}{27}


Potencias y Exponentes

Al estudiar el producto entre números nos podemos encontrar con el producto de un número multiplicado por él mismo dos o más veces. Este tipo de productos tiene propiedades muy particulares. Formalmente, si a es un número real, definimos su n-ésima potencia como el producto de a multiplicado por sí mismo n veces, donde n es un número natural, y lo denotamos la siguiente forma:

\displaystyle a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-\text{veces}}

Esta expresión se puede leer como a elevado a la n o formalmente, la n-ésima potencia de a. También diremos que a es la base y n es el exponente.

Potenciación, potencias base y exponente | totumat.com

Veamos algunos ejemplos.

También pudiera interesarte

Ejemplos

Ejemplo 1

Efectúe el producto que se está definiendo en la expresión 5^{2}.

En este caso la base es igual a 5 y el exponente es igual a 2, entonces estamos multiplicando el número cinco por sí mismo dos veces de la siguiente forma:

5^{2} = 5 \cdot 5 = 25

Nota: La potencia 2 también se llama cuadrado, entonces 5^{2} se puede leer como cinco al cuadrado.

Ejemplo 2

Efectúe el producto que se está definiendo en la expresión (-6)^{2}.

En este caso la base es igual a -6 y el exponente es igual a 2, entonces estamos multiplicando el número menos seis por sí mismo dos veces de la siguiente forma:

(-6)^{2} = (-6) \cdot (-6) = 36

Nota: Todo número elevado al cuadrado es positivo, esto se debe a la ley de los signos, pues el producto de dos números negativos es positivo.

Ejemplo 3

Efectúe el producto que se está definiendo en la expresión 2^{3}.

En este caso la base es igual a 2 y el exponente es igual a 3, entonces estamos multiplicando el número dos por sí mismo tres veces de la siguiente forma:

2^{3} = 2 \cdot 2 \cdot 2 = 8

Nota: La potencia 3 también se llama cubo, entonces 2^{3} se puede leer como dos al cubo.



Ejemplo 4

Efectúe el producto que se está definiendo en la expresión 7^{10}.

En este caso la base es igual a 7 y el exponente es igual a 10, entonces estamos multiplicando el número siete por sí mismo diez veces de la siguiente forma:

7^{10} = 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 = 282475249

Ejemplo 5

Efectúe el producto que se está definiendo en la expresión \left( \frac{1}{2} \right)^{6}.

En este caso la base es igual a \left( \frac{1}{2} \right) y el exponente es igual a 6, entonces estamos multiplicando el número un medio por sí mismo seis veces de la siguiente forma:

\left( \frac{1}{2} \right)^{6} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{64}



Ejemplo 6

Efectúe la operación \left( -\frac{5}{2} \right)^2 usando la definición de potencia y las operaciones entre números racionales.

Debemos tomar en cuenta que si elevamos un número al cuadrado, esto es multiplicar un número por él mismo, dos veces. Entonces,

\left( -\frac{5}{2} \right)^2 = \left( -\frac{5}{2} \right) \cdot \left( -\frac{5}{2} \right)

Por otra parte, la fracción -\frac{5}{2} se puede reescribir como \frac{-5}{2}, entonces podemos reescribir este producto de la siguiente forma:

\left( -\frac{5}{2} \right) \cdot \left( -\frac{5}{2} \right) = \frac{-5}{2} \cdot \frac{-5}{2}

Finalmente, podemos efectuar el producto de las fracciones y recurriendo a la ley de los signos en el numerador, obtenemos lo siguiente:

\frac{(-5) \cdot (-5)}{2 \cdot 2} = \frac{25}{4}

Ejemplo 7

Efectúe la operación \left( -\frac{2}{3} \right)^3 usando la definición de potencia y las operaciones entre números racionales.

Debemos tomar en cuenta que si elevamos un número al cubo, esto es multiplicar un número por él mismo, tres veces. Entonces,

\left( -\frac{2}{3} \right)^3 = \left( -\frac{2}{3} \right) \cdot \left( -\frac{2}{3} \right) \cdot \left( -\frac{2}{3} \right)

Por otra parte, la fracción -\frac{2}{3} se puede reescribir como \frac{-2}{3}, , entonces podemos reescribir este producto de la siguiente forma:

\left( -\frac{2}{3} \right) \cdot \left( -\frac{2}{3} \right) \cdot \left( -\frac{2}{3} \right) = \frac{-2}{3} \cdot \frac{-2}{3} \cdot \frac{-2}{3}

Finalmente, podemos efectuar el producto de las fracciones y recurriendo a la ley de los signos en el numerador, obtenemos lo siguiente:

\frac{(-2) \cdot (-2) \cdot (-2)}{3 \cdot 3 \cdot 3} = \frac{-8}{27} = - \frac{8}{27}