Ejercicios Propuestos

Ejercicios Propuestos – Bosquejo de Polinomios

Anuncios

Puntos Críticos

Calcule los puntos críticos de las siguientes funciones y verifique si estos son máximos o mínimos locales. Finalmente, indique cuales son los intervalos de crecimiento y decrecimiento.

Recuerde que los puntos críticos de una función, son aquellos donde

f'(x)=0

  1. f(x)=x^2
  2. f(x)=x^3
  3. f(x)=x^4
  4. f(x)=x^5

  1. f(x)=x^2+2
  2. f(x)=x^3+3
  3. f(x)=x^4+4
  4. f(x)=x^5+5

  1. f(x)=x^2+2x
  2. f(x)=x^3+3x
  3. f(x)=x^4+4x
  4. f(x)=x^5+5x

  1. f(x)=x^2 + x - 2
  2. f(x)=x^2 - 8x + 15
  3. f(x)=x^2 + 2x - 8
  4. f(x)=x^2 - 3x - 18

  1. f(x)=\dfrac{x^3}{3} + \dfrac{x^2}{2} - 2x
  2. f(x)=\dfrac{4x^3}{3} - \dfrac{16x^2}{2} + 60x
  3. f(x)=\dfrac{x^3}{3} + x^2 - 8x
  4. f(x)=x^3 + \dfrac{3x^2}{2} - 6x
  1. f(x)=x^4 - 7x^3 + 6x^2 + 5
  2. f(x)=x^4 + 3x^3 - 4x^2 - 2
  3. f(x)=2x^4 + 2x^3 - 2x^2 + 6
  4. f(x)=x^4 - 2x^3 - 5x^2 + 1

  1. f(x)=xe^x
  2. f(x)=x^2e^x
  3. f(x)=x^3e^x
  4. f(x)=x^4e^x

  1. f(x)=e^{x^2}
  2. f(x)=e^{x^2-1}
  3. f(x)=e^{x^2-x}
  4. f(x)=e^{x^3-x^2}

  1. f(x)=x \ln(x)
  2. f(x)=x^2 \ln(x)
  3. f(x)=x^3 \ln(x)
  4. f(x)=x^4 \ln(x)

  1. f(x)= \ln(x+3)
  2. f(x)= \ln(x^2-1)
  3. f(x)= \ln(x^3-8)
  4. f(x)= \ln(x^4-16)
Anuncios

Puntos de Inflexión

Calcule los puntos de inflexión de las siguientes funciones. Finalmente, indique cuales son los intervalos de convexidad (cóncava hacia arriba) y concavidad (cóncava hacia abajo).

Recuerde que los posibles puntos de inflexión de una función, son aquellos donde

f''(x)=0$

  1. f(x)=x^2
  2. f(x)=x^3
  3. f(x)=x^4
  4. f(x)=x^5

  1. f(x)=x^2+2
  2. f(x)=x^3-3
  3. f(x)=x^4+4
  4. f(x)=x^5-5

  1. f(x)=x^2-2x
  2. f(x)=x^3+3x
  3. f(x)=x^4-4x
  4. f(x)=x^5+5x

  1. f(x)=x^2 + x - 2
  2. f(x)=x^2 - 8x + 15
  3. f(x)=x^2 + 2x - 8
  4. f(x)=x^2 - 3x - 18

  1. f(x)=x^3 - 6x^2 + 11x - 6
  2. f(x)=x^3 - 7x + 6
  3. f(x)=x^3 + 3x^2 - 4x - 12
  4. f(x)=x^3 + 4x^2 + x - 6
  1. f(x)=x^4 - 4x^3 - x^2 + 16x - 12
  2. f(x)=x^4 - 6x^3 + x^2 + 24x - 20
  3. f(x)=x^4 - 7x^3 + 9x^2 + 7x - 10
  4. f(x)=x^4 - 2x^3 - 5x^2 + 1

  1. f(x)=xe^x
  2. f(x)=x^2e^x
  3. f(x)=x^3e^x
  4. f(x)=x^4e^x

  1. f(x)=e^{x^2}
  2. f(x)=e^{x^2-1}
  3. f(x)=e^{x^2-x}
  4. f(x)=e^{x^3-x^2}

  1. f(x)=x \ln(x)
  2. f(x)=x^2 \ln(x)
  3. f(x)=x^3 \ln(x)
  4. f(x)=x^4 \ln(x)

  1. f(x)= \ln(x+3)
  2. f(x)= \ln(x^2-1)
  3. f(x)= \ln(x^3-8)
  4. f(x)= \ln(x^4-16)
Anuncios

Bosquejo de Polinomios

Para graficar un polinomio hay que tomar en cuenta varios puntos de interés referentes a la función y sus primeras dos derivadas.

  • Para determinar los puntos de corte con el Eje Y, se debe evaluar la función en cero, es decir, calcular f(0) (Sustituir la variable x por cero).
  • Para calcular los puntos de corte con el Eje X, se deben calcular los puntos para los cuales la función es igual a cero, es decir, calcular los valores de x para los cuales f(x)=0 (Para esto se puede usar el Método del Discriminante si el polinomio es cuadrático o el Método de Ruffini si es de mayor grado).
  • Para determinar los puntos críticos, se deben calcular los puntos para los cuales la derivada de la función es igual a cero, es decir, calcular los valores para los cuales f'(x)=0.
  • Para determinar los puntos de inflexión, se deben calcular los puntos para los cuales la segunda derivada de la función es igual a cero, es decir, calcular los valores para los cuales f''(x)=0.

Una vez calculados estos puntos, tome en cuenta que el comportamiento de la función está definido por el signo de la función y sus primeras dos derivadas. Si consideramos un intervalo (a,b) \subseteq \mathbb{R}.

  • Si f(x)>0 en (a,b) entonces la función está por encima del Eje X.
  • Si f(x)<0 en (a,b) entonces la función está por debajo del Eje Y.
  • Si f'(x)>0 en (a,b) entonces la función es creciente (\nearrow).
  • Si f'(x)<0 en (a,b) entonces la función es decreciente (\searrow).
  • Si f''(x)>0 en (a,b) entonces la función es convexa (\cup).
  • Si f''(x)<0 en (a,b) entonces la función es cóncava (\cap).

En los siguientes ejercicios haga un bosquejo de la gráfica de los siguientes polinomios considerando los siguientes pasos:

  • Calculamos los puntos de corte con los ejes y estudiamos su positividad (intervalos en los que es positiva o negativa).
  • Calculamos los puntos críticos y determinamos su monotonía (intervalos en los que crece o decrece).
  • Calculamos los puntos de inflexión y determinamos su concavidad (intervalos en los que es convexa o cóncava).
  • Calculamos las imágenes de los puntos de los puntos críticos y de inflexión.
  • Esbozar la gráfica.
Anuncios
  1. f(x)=x^2
  2. f(x)=x^3
  3. f(x)=x^4
  4. f(x)=x^5

  1. f(x) = x^2 + 4x - 5
  2. f(x) = x^2 + 5x + 4
  3. f(x) = x^2 + 8x + 15
  4. f(x) = x^2 - 1

  1. f(x) = - 4x^2 - 4x
  2. f(x) = 4x^2 + 4x
  3. f(x) = 2x^2 - 14x + 24
  4. f(x) = 2x^2 + 4x - 6

  1. f(x) = - 2x^3 - 2x^2 + 12x
  2. f(x) = 2x^3 - 6x^2 - 20x
  3. f(x) = - 5x^3 + 10x^2 + 75x
  4. f(x) = x^3 + 8x^2 + 16x

  1. f(x) = x^3 - 3x^2 - 16x + 48
  2. f(x) = x^3 - 5x^2 - 4x + 20
  3. f(x) = x^3 + 6x^2 - x - 30
  4. f(x) = x^3 - 4x^2 - 16x + 64
  1. f(x) = 5x^3 + 30x^2 + 15x - 50
  2. f(x) = x^3 - 13x + 12
  3. f(x) = - 2x^3 - 6x^2 + 26x + 30
  4. f(x) = 5x^3 + 30x^2 - 5x - 150

  1. f(x) = x^4 - 25x^2 + 144
  2. f(x) = x^4 - 2x^2 + 1
  3. f(x) = x^4 - 8x^2 + 16
  4. f(x) = x^4 - 8x^2 + 16

  1. f(x) = 10x^4 - 410x^2 + 4000
  2. f(x) = -x^4 + 45x^2 - 324
  3. f(x) = 9x^4 - 261x^2 + 900
  4. f(x) = 7x^4 - 203x^2 + 700

  1. f(x) = x^5 - 41x^3 + 400x
  2. f(x) = x^5 - 20x^3 + 64x
  3. f(x) = x^5 - 32x^3 + 256x
  4. f(x) = x^5 - 26x^3 + 25x

  1. f(x) = - 9x^5 + 1476x^3 - 57600x
  2. f(x) = - 2x^5 + 40x^3 - 128x
  3. f(x) = 2x^5 - 212x^3 + 4050x
  4. f(x) = 8x^5 - 488x^3 + 7200x
Anuncios

Optimización de funciones en la economía

Para cada una de las siguientes situaciones, responda las siguientes preguntas:

  • ¿Cuáles son valores de q para los cuales la función de ingreso alcanza máximos? ¿Cuáles son esos ingresos máximos?
  • ¿Cuáles son valores de q para los cuales la función de costos alcanza mínimos? ¿Cuáles son esos costos mínimos?
  • ¿Cuáles son valores de q para los cuales la función de utilidad alcanza máximos? ¿Cuáles son esas utilidades máximas?

  1. Sea 74 + \frac{3 \cdot q}{191} , la ecuación de oferta de caramelos en una confitería de la ciudad y suponga que los costos totales vienen dados de la forma \frac{7 \cdot q^2}{22} + 59 .
  2. Sea 40 + \frac{21 \cdot q}{125} , la ecuación de oferta de piñatas en una piñatería de la ciudad y suponga que los costos totales vienen dados de la forma \frac{13 \cdot q^2}{197} + 78 .
  3. Sea 35 + \frac{21 \cdot q}{293} , la ecuación de oferta de carne en una carnicería de la ciudad y suponga que los costos totales vienen dados de la forma \frac{q^2}{831} + 49 .
  4. Sea 50 + \frac{2 \cdot q}{129} , la ecuación de oferta de cachitos de jamón y queso en una panadería de la ciudad y suponga que los costos totales vienen dados de la forma \frac{2 \cdot q^2}{55} + 13 .

  1. Sea 55 + 3 \cdot q , la ecuación de oferta de llaves en una cerrajería de la ciudad y suponga que los costos totales vienen dados de la forma 0.094q^3 - 0.6 q^2 + 32 .
  2. Sea 685 + 20 \cdot q , la ecuación de oferta de hamburguesas en una hamburguesería de la ciudad y suponga que los costos totales vienen dados de la forma q^3 - 2 \cdot q^2 - 84 \cdot q + 360 .
  3. Sea 452 + 16 \cdot q , la ecuación de oferta de perros calientes en una perro calentero de la ciudad y suponga que los costos totales vienen dados de la forma 0.15q^3 - 0.6 \cdot q^2 + 32 .
  4. Sea 421 + 19 \cdot q , la ecuación de oferta de palmeritas en una panadería de la ciudad y suponga que los costos totales vienen dados de la forma 0.065q^3 - 3 \cdot q^2 + 20 \cdot q + 600 .

  1. Sea 493 + 0.10 \cdot q^2 , la ecuación de oferta de marcadores en una papelería de la ciudad y suponga que los costos totales vienen dados de la forma 0.1q^3 - q^2 + 65 \cdot q + 225 .
  2. Sea 635 + 0.3 \cdot q^2 , la ecuación de oferta de papas fritas en una restaurante de comida rápida de la ciudad y suponga que los costos totales vienen dados de la forma 0.11q^3 - 11 \cdot q^2 - 45 \cdot q + 567 .
  3. Sea 486 + 0.9 \cdot q^2 , la ecuación de oferta de colchones en una mueblería de la ciudad y suponga que los costos totales vienen dados de la forma 0.02q^3 - 12 \cdot q^2 + 27 \cdot q + 486 .
  4. Sea 60 + 0.5 \cdot q^2 , la ecuación de oferta de ropa en una calle de la ciudad y suponga que los costos totales vienen dados de la forma 0.35q^3 - q^2 + 21 \cdot q + 45 .

Ejercicios Propuestos

Ejercicios Propuestos – Interpretación Económica de la Derivada

Anuncios

Análisis Marginal

Para cada una de las siguientes situaciones, halle las funciones de ingreso marginal, costo marginal y utilidad marginal. Evalúe cada una en el valor indicado e interprete los resultados.

1.- Sea p=\frac{12}{100}q+10, la ecuación de oferta de cachitos de jamón y queso en una panadería de la ciudad. Si los costos para comprar materia prima varían de la forma C = q+5.

  • Calcule el Ingreso Marginal cuando se venden 10 cachitos.
  • Calcule el Costo Marginal cuando se producen 10 cachitos.
  • Calcule la Utilidad Marginal cuando se producen y venden 10 cachitos.

2.- Sea p=\frac{4}{3}q+300, la ecuación de oferta de pan francés en una panadería de la ciudad por unidad. Si los costos para comprar materia prima varían de la forma C = 0.33 \cdot q^2 + 20.

  • Calcule el Ingreso Marginal cuando se venden 50 unidades de pan francés.
  • Calcule el Costo Marginal cuando se producen 50 unidades de pan francés.
  • Calcule la Utilidad Marginal cuando se producen y venden 50 unidades de pan francés.

3.- Una fábrica de queso crema ha calculado la siguiente ecuación de oferta para cada 100 gramos de su producto: p=\frac{45}{2000}q^2+679. Si los costos para comprar materia prima varían de la forma C = 5q+43.

  • Calcule el Ingreso Marginal cuando se venden 100 kilos.
  • Calcule el Costo Marginal cuando se producen 100 kilos.
  • Calcule la Utilidad Marginal cuando se producen y venden 100 kilos.

4.- Una fábrica de lavadoras ha calculado la siguiente ecuación de oferta por cada unidad de su producto: p=\frac{78}{560}\sqrt[5]{q^9}+25000. Si los costos para comprar materia prima varían de la forma C = \frac{8}{5}q^3+33q-20.

  • Calcule el Ingreso Marginal cuando se venden 25 unidades.
  • Calcule el Costo Marginal cuando se producen 25 unidades.
  • Calcule la Utilidad Marginal cuando se producen y venden 25 unidades.
Anuncios

Elasticidad de Demanda

Para cada una de las siguientes funciones de demanda, halle la función de elasticidad de demanda puntual y calcule la elasticidad de demanda una vez que se fija el precio indicado, indique si la demanda es elástica, inelástica o tiene elasticidad unitaria.

  1. q=-3 \cdot p + 10 , p=8
  2. q=-4 \cdot p + 20, p=13
  3. q=-9 \cdot p + 15 , p=7
  4. q=-10 \cdot p + 35, p=20

  1. q=-0.7 \cdot p + 20 , p=11
  2. q=-0.4 \cdot p + 40, p=23
  3. q=-0.69 \cdot p + 9 , p=1
  4. q=-0.10 \cdot p + 18, p=6

  1. q=-10 \cdot p + 110 , p=63.4
  2. q=-50 \cdot p + 120, p=78.4
  3. q=-60 \cdot p + 125 , p=100.4
  4. q=-73 \cdot p + 357, p=237.67

Elasticidad de Demanda

Al estudiar la demanda de un artículo respecto a su precio, es posible cuantificar la relación entre estos dos elementos definiendo la ecuación de demanda, tomando en cuenta que a menor precio mayor será la demanda y viceversa, sin embargo, es importante estudiar qué tan sensible es la demanda respecto a un cambio en el precio.

También pudiera interesarte

Partiendo de los cambios porcentuales en el precio y la demanda, podemos estudiar la sensibilidad de la demanda respecto un cambio en el precio tal como lo veremos en los siguientes ejemplos:

Ejemplos

Ejemplo 1

Suponga que la demanda de Coca-Cola ha decrecido en un 5\% después de que el precio de esta aumentó en un 3\%. En términos absolutos, notamos que el cambio en la demanda es mayor que el cambio en el precio, en este caso decimos que la demanda es elástica, pues un cambio en el precio ha tenido una alta incidencia en la demanda.

Ejemplo 2

Suponga que la demanda de Zanahoria ha decrecido en un 10\% después de que el precio de esta aumentó en un 10\%. En términos absolutos, notamos el cambio en la demanda igual que el cambio en el precio, en este caso decimos que la demanda tiene elasticidad unitaria, pues el cambio en el precio y en la demanda tienen la misma magnitud.

Ejemplo 3

Suponga que la demanda de Gas Doméstico, usado para cocinar, ha decrecido en un 2\% después de que el precio de esta aumentó en un 7\%. En términos absolutos, notamos que el cambio en la demanda es menor que el cambio en el precio, en este caso decimos que la demanda es inelástica, pues un cambio en el precio ha tenido una baja incidencia en la demanda.


Anuncios

Tomando en cuenta estos ejemplos, definimos un indicador que llamaremos Elasticidad de Demanda, que se calcula dividiendo el cambio porcentual en la demanda entre el cambio porcentual en el precio y podemos categorizar el valor de dicho indicador de la siguiente forma:

  • Si el cambio porcentual en la demanda es mayor que el cambio porcentual en el precio, entonces

\left| \frac{\text{Cambio porcentual en la demanda}}{\text{Cambio porcentual en el precio}} \right| > 1 \Longrightarrow La demanda es elástica

Elasticidad de Demanda, Demanda Elástica | totumat.com
  • Si el cambio porcentual en la demanda es igual que el cambio porcentual en el precio, entonces, el siguiente cociente

\left| \frac{\text{Cambio porcentual en la demanda}}{\text{Cambio porcentual en el precio}} \right| = 1 \Longrightarrow La demanda tiene elasticidad unitaria

Elasticidad de Demanda, Elasticidad Unitaria | totumat.com
  • Si el cambio porcentual en la demanda es menor que el cambio porcentual en el precio, entonces, el siguiente cociente

\left| \frac{\text{Cambio porcentual en la demanda}}{\text{Cambio porcentual en el precio}} \right| < 1 \Longrightarrow La demanda es inelástica

Elasticidad de Demanda, Demanda Inelástica | totumat.com

La elasticidad de demanda también se puede calcular en el estudio de las ecuaciones de demanda, particularmente, cuando definimos funciones de demanda. Supongamos que definimos el precio p de un determinado artículo en función de las cantidades demandadas q para determinar una función de demanda, es decir,

p=f(q)

De esta forma, los consumidores demandarán q unidades de dicho artículo si el precio es fijado en f(q), por otra parte, los consumidores demandarán q+h unidades de dicho artículo si el precio es fijado en f(q+h). Considerando estos valores, podemos calcular en cuanto se han incrementado la cantidad demandada y el precio.

Anuncios

La diferencia (q+h) - q = h determina el incremento que hubo en la cantidad demandada y más aún, el cambio porcentual en la cantidad demandada es calculado de la siguiente forma:

\frac{h}{q} \cdot 100

La diferencia f(q+h) - f(q) determina el incremento que hubo en el precio y más aún, el cambio porcentual en el precio es calculado de la siguiente forma:

\frac{f(q+h) - f(q)}{f(q)} \cdot 100

Considerando estos cambios porcentuales, calculamos el cociente entre estos dos cambios para determinar la elasticidad de demanda de las siguiente forma:

\dfrac{\frac{h}{q} \cdot 100}{\frac{f(q+h) - f(q)}{f(q)} \cdot 100} = \dfrac{\frac{h}{q}}{\frac{f(q+h) - f(q)}{f(q)}}

Considerando esta última división de fracciones, podemos notar que esta es equivalente a la siguiente división de fracciones

\dfrac{\frac{f(q)}{q}}{\frac{f(q+h) - f(q)}{h}}

Esta última expresión resulta de vital importancia para estudiar la elasticidad de demanda al considerar el menor incremento posible, es decir, cuando h \to 0 entonces podemos definir la siguiente expresión

\lim_{h \to 0} \dfrac{\frac{f(q)}{q}}{\frac{f(q+h) - f(q)}{h}}

De existir este límite, debemos notar que la fracción que se encuentra en el denominador es justamente la derivada de la función f(q) respecto a la variable q. Entonces, considerando que la función f(q) determina el precio p, definimos la Elasticidad Puntual de la Demanda de la siguiente forma:

\eta(q) = \dfrac{ \ \ \dfrac{p}{q} \ \ }{\dfrac{dp}{dq}}

Sin embargo, debemos tomar en cuenta que si se está estudiando como la variación del precio afecta a la demanda, conviene expresar la demanda en función del precio y en consecuencia. Entonces, partiendo del hecho de que la derivada de p respecto a q se puede expresar en función de la derivada de la función inversa de p, es decir,

\dfrac{dp}{dq} = \dfrac{1}{\dfrac{dq}{dp}}

Podemos concluir que si la función de demanda está expresada como q en función de p, entonces definimos la Elasticidad Puntual de la Demanda de la siguiente forma:

\eta(p) = \dfrac{ \ \ \dfrac{p}{q} \ \ }{\dfrac{1}{\frac{dp}{dq}}} = \dfrac{p}{q} \cdot \dfrac{dq}{dp}

Una vez que hemos calculado la elasticidad puntual de demanda usando esta definición, podemos categorizar este valor para indicar cual es el impacto que tiene el precio sobre la demanda de la siguiente manera:

  • Si \left| \eta \right| > 1, entonces la demanda es elástica.
  • Si \left| \eta \right| = 1, entonces la demanda tiene elasticidad unitaria.
  • Si \left| \eta \right| < 1, entonces la demanda es inelástica.

Veamos en los siguientes ejemplos como calcular la elasticidad puntual a partir de una función de demanda.

Anuncios

Ejemplos

Ejemplo 4

Suponga que la demanda semanal de kilos de zanahoria en una pequeña tienda de verduras de la ciudad está definida por la siguiente función:

q = -\frac{9}{5} \cdot p + 43

¿Cuál es la elasticidad puntual de demanda si se fija el precio del kilo de zanahoria en 17.5?

Para usar la fórmula de la elasticidad puntual de demanda debemos calcular la derivada de la función de demanda, de esta forma, tenemos que

\dfrac{dq}{dp} = -\frac{9}{5}

Una vez calculada la derivada de la función de demanda, sustituimos la derivada y la función en nuestra fórmula:

\eta(p) = \frac{p}{q} \cdot \frac{dq}{dp} = \frac{p}{-\frac{9}{5} \cdot p + 43} \cdot \left( -\frac{9}{5} \right)

Teniendo planteada la fórmula de la elasticidad puntual de demanda para la función q(p), evaluamos en p=17.5,

\eta(17.5) = \frac{17.5}{-\frac{9}{5} \cdot 17.5 + 43} \cdot \left( -\frac{9}{5} \right) = -2.7391

De esta forma, al ser |-2.7391| > 1, concluimos que la demanda puntual es elástica cuando se fija el precio en p=17.5, es decir, este precio tiene alta incidencia en la demanda del kilo de zanahoria.